Patents by Inventor Meike Hutt
Meike Hutt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12269881Abstract: The present invention concerns antigen binding proteins specifically binding melanoma associated antigen A (MAGE-A) protein-derived antigens. The invention in particular provides antigen binding proteins which specifically bind to the MAGE-A antigenic peptide comprising or consisting of SEQ ID NO: 1 in a complex with a major histocombatibility (MHC) protein. The antigen binding proteins of the invention contain, in particular, the complementary determining regions (CDRs) of novel engineered T cell receptors (TCRs) that specifically bind to said MAGE-A peptide/MHC complex. The antigen binding proteins of the invention are of use for the diagnosis, treatment and prevention of MAGE-A expressing cancerous diseases. Further provided are nucleic acids encoding the antigen binding proteins of the invention, vectors comprising these nucleic acids, recombinant cells expressing the antigen binding proteins and pharmaceutical compositions comprising the antigen binding proteins of the invention.Type: GrantFiled: December 13, 2023Date of Patent: April 8, 2025Assignee: Immatics Biotechnologies GmbHInventors: Meike Hutt, Felix Unverdorben, Sebastian Bunk, Dominik Maurer, Martin Hofmann, Gabriele Pszolla, Sara Yousef, Claudia Wagner, Frank Schwoebel, Heiko Schuster
-
Publication number: 20250034227Abstract: The present invention relates to antigen binding proteins that specifically bind to a tumor expressed melanoma-associated antigen (MAGE) B2 antigenic peptide in a complex with MHC. The antigen binding proteins are provided for use in the treatment of MAGEB2-expressing cancers. Further provided are nucleic acids encoding the antigen binding proteins, vectors comprising the nucleic acids, recombinant cells expressing the antigen binding proteins and pharmaceutical compositions comprising the antigen binding proteins.Type: ApplicationFiled: July 26, 2024Publication date: January 30, 2025Inventors: Felix UNVERDORBEN, Sebastian BUNK, Martin HOFMANN, Meike HUTT, Timo MANZ, Nadine ASCHMONEIT, Maike JAWORSKI, Lena SCHMOHL, Claudia WAGNER, Dominik MAURER, Heiko SCHUSTER, Nora TREIBER
-
Publication number: 20240228611Abstract: The present invention pertains to antigen recognizing constructs against COL6A3 antigens. The invention in particular provides novel engineered T cell receptor (TCR) based molecules which are selective and specific for the tumor expressing antigen COL6A3. The TCR of the invention, and COL6A3 antigen binding fragments derived therefrom, are of use for the diagnosis, treatment and prevention of COL6A3 expressing cancerous diseases. Further provided are nucleic acids encoding the antigen recognizing constructs of the invention, vectors comprising these nucleic acids, recombinant cells expressing the antigen recognizing constructs and pharmaceutical compositions comprising the compounds of the invention.Type: ApplicationFiled: February 20, 2024Publication date: July 11, 2024Inventors: Felix UNVERDORBEN, Sebastian BUNK, Martin HOFMANN, Dominik MAURER, Meike HUTT, Claudia WAGNER, Leonie ALTEN
-
Publication number: 20240117068Abstract: The present invention concerns antigen binding proteins specifically binding melanoma associated antigen A (MAGE-A) protein-derived antigens. The invention in particular provides antigen binding proteins which specifically bind to the MAGE-A antigenic peptide comprising or consisting of SEQ ID NO: 1 in a complex with a major histocombatibility (MHC) protein. The antigen binding proteins of the invention contain, in particular, the complementary determining regions (CDRs) of novel engineered T cell receptors (TCRs) that specifically bind to said MAGE-A peptide/MHC complex. The antigen binding proteins of the invention are of use for the diagnosis, treatment and prevention of MAGE-A expressing cancerous diseases. Further provided are nucleic acids encoding the antigen binding proteins of the invention, vectors comprising these nucleic acids, recombinant cells expressing the antigen binding proteins and pharmaceutical compositions comprising the antigen binding proteins of the invention.Type: ApplicationFiled: December 13, 2023Publication date: April 11, 2024Inventors: Meike HUTT, Felix UNVERDORBEN, Sebastian BUNK, Dominik MAURER, Martin HOFMANN, Gabriele PSZOLLA, Sara YOUSEF, Claudia WAGNER, Frank SCHWOEBEL, Heiko SCHUSTER
-
Publication number: 20240092933Abstract: The present invention concerns antigen binding proteins directed against PRAME protein-derived antigens. The invention in particular provides antigen binding proteins which are specific for the tumor expressed antigen PRAME, wherein the tumor antigen comprises or consists of SEQ ID NO: 50 and is in a complex with a major histocompatibility complex (MHC) protein. The antigen binding proteins of the invention contain, in particular, the complementary determining regions (CDRs) of novel engineered T cell receptors (TCRs) that specifically bind to said PRAME peptide. The antigen binding proteins of the invention are for use in the diagnosis, treatment and prevention of PRAME expressing cancerous diseases. Further provided are nucleic acids encoding the antigen binding proteins of the invention, vectors comprising said nucleic acids, recombinant cells expressing the antigen binding proteins and pharmaceutical compositions comprising the antigen binding proteins of the invention.Type: ApplicationFiled: November 16, 2023Publication date: March 21, 2024Inventors: Gabriele PSZOLLA, Martin HOFMANN, Meike HUTT, Sebastian BUNK, Felix UNVERDORBEN, Frank SCHWOEBEL, Dominik MAURER, Maike JAWORSKI, Claudia WAGNER, Florian SCHWOERER, Heiko SCHUSTER
-
Patent number: 11932689Abstract: The present invention pertains to antigen recognizing constructs against COL6A3 antigens. The invention in particular provides novel engineered T cell receptor (TCR) based molecules which are selective and specific for the tumor expressing antigen COL6A3. The TCR of the invention, and COL6A3 antigen binding fragments derived therefrom, are of use for the diagnosis, treatment and prevention of COL6A3 expressing cancerous diseases. Further provided are nucleic acids encoding the antigen recognizing constructs of the invention, vectors comprising these nucleic acids, recombinant cells expressing the antigen recognizing constructs and pharmaceutical compositions comprising the compounds of the invention.Type: GrantFiled: December 17, 2020Date of Patent: March 19, 2024Assignee: IMMATICS BIOTECHNOLOGIES GMBHInventors: Felix Unverdorben, Sebastian Bunk, Martin Hofmann, Dominik Maurer, Meike Hutt, Claudia Wagner, Leonie Alten
-
Publication number: 20240052054Abstract: The present invention concerns antigen binding proteins specifically binding melanoma associated antigen A (MAGE-A) protein-derived antigens. The invention in particular provides antigen binding proteins which specifically bind to the MAGE-A antigenic peptide comprising or consisting of SEQ ID NO: 1 in a complex with a major histocombatibility (MHC) protein. The antigen binding proteins of the invention contain, in particular, the complementary determining regions (CDRs) of novel engineered T cell receptors (TCRs) that specifically bind to said MAGE-A peptide/MHC complex. The antigen binding proteins of the invention are of use for the diagnosis, treatment and prevention of MAGE-A expressing cancerous diseases. Further provided are nucleic acids encoding the antigen binding proteins of the invention, vectors comprising these nucleic acids, recombinant cells expressing the antigen binding proteins and pharmaceutical compositions comprising the antigen binding proteins of the invention.Type: ApplicationFiled: October 9, 2023Publication date: February 15, 2024Inventors: Meike HUTT, Felix UNVERDORBEN, Sebastian BUNK, Dominik MAURER, Martin HOFMANN, Gabriele PSZOLLA, Sara YOUSEF, Claudia WAGNER, Frank SCHWOEBEL, Heiko SCHUSTER
-
Patent number: 11859009Abstract: The present invention concerns antigen binding proteins directed against PRAME protein-derived antigens. The invention in particular provides antigen binding proteins which are specific for the tumor expressed antigen PRAME, wherein the tumor antigen comprises or consists of SEQ ID NO: 50 and is in a complex with a major histocompatibility complex (MHC) protein. The antigen binding proteins of the invention contain, in particular, the complementary determining regions (CDRs) of novel engineered T cell receptors (TCRs) that specifically bind to said PRAME peptide. The antigen binding proteins of the invention are for use in the diagnosis, treatment and prevention of PRAME expressing cancerous diseases. Further provided are nucleic acids encoding the antigen binding proteins of the invention, vectors comprising said nucleic acids, recombinant cells expressing the antigen binding proteins and pharmaceutical compositions comprising the antigen binding proteins of the invention.Type: GrantFiled: September 22, 2022Date of Patent: January 2, 2024Assignee: IMMATICS BIOTECHNOLOGIES GMBHInventors: Gabriele Pszolla, Martin Hofmann, Meike Hutt, Sebastian Bunk, Felix Unverdorben, Frank Schwoebel, Dominik Maurer, Maike Jaworski, Claudia Wagner, Florian Schwoerer, Heiko Schuster
-
Patent number: 11840577Abstract: The present invention concerns antigen binding proteins specifically binding melanoma associated antigen A (MAGE-A) protein-derived antigens. The invention in particular provides antigen binding proteins which specifically bind to the MAGE-A antigenic peptide comprising or consisting of SEQ ID NO: 1 in a complex with a major histocombatibility (MHC) protein. The antigen binding proteins of the invention contain, in particular, the complementary determining regions (CDRs) of novel engineered T cell receptors (TCRs) that specifically bind to said MAGE-A peptide/MHC complex. The antigen binding proteins of the invention are of use for the diagnosis, treatment and prevention of MAGE-A expressing cancerous diseases. Further provided are nucleic acids encoding the antigen binding proteins of the invention, vectors comprising these nucleic acids, recombinant cells expressing the antigen binding proteins and pharmaceutical compositions comprising the antigen binding proteins of the invention.Type: GrantFiled: July 30, 2020Date of Patent: December 12, 2023Assignee: IMMATICS BIOTECHNOLOGIES GMBHInventors: Meike Hutt, Felix Unverdorben, Sebastian Bunk, Dominik Maurer, Martin Hofmann, Gabriele Pszolla, Sara Yousef, Claudia Wagner, Frank Schwoebel, Heiko Schuster
-
Publication number: 20230357428Abstract: The present invention concerns antigen binding proteins directed against PRAME protein-derived antigens. The invention in particular provides antigen binding proteins which are specific for the tumor expressed antigen PRAME, wherein the tumor antigen comprises or consists of SEQ ID NO: 50 and is in a complex with a major histocompatibility complex (MHC) protein. The antigen binding proteins of the invention contain, in particular, the complementary determining regions (CDRs) of novel engineered T cell receptors (TCRs) that specifically bind to said PRAME peptide. The antigen binding proteins of the invention are for use in the diagnosis, treatment and prevention of PRAME expressing cancerous diseases. Further provided are nucleic acids encoding the antigen binding proteins of the invention, vectors comprising said nucleic acids, recombinant cells expressing the antigen binding proteins and pharmaceutical compositions comprising the antigen binding proteins of the invention.Type: ApplicationFiled: April 17, 2023Publication date: November 9, 2023Inventors: Gabriele PSZOLLA, Martin HOFMANN, Meike HUTT, Sebastian BUNK, Felix UNVERDORBEN, Frank SCHWOEBEL, Dominik MAURER, Maike JAWORSKI, Claudia WAGNER, Florian SCHWOERER, Heiko SCHUSTER
-
Publication number: 20230203200Abstract: The present invention concerns bispecific antigen binding proteins directed against MHC presented target antigens (TA). The invention in particular provides bispecific antigen binding proteins comprising at least two antigen binding sites (A and B), wherein the antigen binding site A binds to CD3 and the antigen binding site B binds to a target antigenic (TA) peptide/MHC complex. The bispecific antigen binding proteins of the invention comprise, in particular, the CDRs of the VL and VH domains of novel engineered anti-CD3 antibodies having a reduced affinity. The bispecific antigen binding proteins of the invention are of use for the diagnosis, treatment and prevention of TA associated diseases, such as tumor-associated antigen (TAA) expressing cancerous diseases.Type: ApplicationFiled: November 2, 2022Publication date: June 29, 2023Inventors: Gabriele PSZOLLA, Martin HOFMANN, Felix UNVERDORBEN, Meike HUTT, Dominik MAURER, Sebastian BUNK
-
Publication number: 20230132241Abstract: The present invention concerns antigen binding proteins directed against PRAME protein-derived antigens. The invention in particular provides antigen binding proteins which are selective and specific for the tumor expressed antigen PRAME, wherein the tumor antigen comprises or consists of SEQ ID NO: 8 and is in a complex with a major histocompatibility complex (MHC) protein. The antigen binding proteins of the invention contain, in particular, the complementary determining regions (CDRs) of novel engineered T cell receptors (TCRs) that specifically bind to said PRAME peptide. The antigen binding proteins of the invention are for use in the diagnosis, treatment and prevention of PRAME expressing cancerous diseases. Further provided are nucleic acids encoding the antigen binding proteins of the invention, vectors comprising said nucleic acids, recombinant cells expressing the antigen binding proteins and pharmaceutical compositions comprising the antigen binding proteins of the invention.Type: ApplicationFiled: January 15, 2020Publication date: April 27, 2023Inventors: Sebastian BUNK, Martin HOFMANN, Meike HUTT, Dominik MAURER, Gabriele PSZOLLA, Frank SCHWOEBEL, Felix UNVERDORBEN, Claudia WAGNER, Sara YOUSEF
-
Publication number: 20230091330Abstract: The present invention concerns antigen binding proteins directed against PRAME protein-derived antigens. The invention in particular provides antigen binding proteins which are specific for the tumor expressed antigen PRAME, wherein the tumor antigen comprises or consists of SEQ ID NO: 50 and is in a complex with a major histocompatibility complex (MHC) protein. The antigen binding proteins of the invention contain, in particular, the complementary determining regions (CDRs) of novel engineered T cell receptors (TCRs) that specifically bind to said PRAME peptide. The antigen binding proteins of the invention are for use in the diagnosis, treatment and prevention of PRAME expressing cancerous diseases. Further provided are nucleic acids encoding the antigen binding proteins of the invention, vectors comprising said nucleic acids, recombinant cells expressing the antigen binding proteins and pharmaceutical compositions comprising the antigen binding proteins of the invention.Type: ApplicationFiled: September 22, 2022Publication date: March 23, 2023Inventors: Gabriele PSZOLLA, Martin HOFMANN, Meike HUTT, Sebastian BUNK, Felix UNVERDORBEN, Frank SCHWOEBEL, Dominik MAURER, Maike JAWORSKI, Claudia WAGNER, Florian SCHWOERER, Heiko SCHUSTER
-
Publication number: 20220372165Abstract: The present invention concerns antigen binding proteins directed against PRAME protein-derived antigens. The invention in particular provides antigen binding proteins which are specific for the tumor expressed antigen PRAME, wherein the tumor antigen comprises or consists of SEQ ID NO: 50 and is in a complex with a major histocompatibility complex (MHC) protein. The antigen binding proteins of the invention contain, in particular, the complementary determining regions (CDRs) of novel engineered T cell receptors (TCRs) that specifically bind to said PRAME peptide. The antigen binding proteins of the invention are for use in the diagnosis, treatment and prevention of PRAME expressing cancerous diseases. Further provided are nucleic acids encoding the antigen binding proteins of the invention, vectors comprising said nucleic acids, recombinant cells expressing the antigen binding proteins and pharmaceutical compositions comprising the antigen binding proteins of the invention.Type: ApplicationFiled: May 4, 2022Publication date: November 24, 2022Inventors: Gabriele PSZOLLA, Martin HOFMANN, Meike HUTT, Sebastian BUNK, Felix UNVERDORBEN, Frank SCHWOEBEL, Dominik MAURER, Maike JAWORSKI, Claudia WAGNER, Florian SCHWOERER, Heiko SCHUSTER
-
Patent number: 11008402Abstract: The invention provides an antigen-binding protein that specifically binds to a conformational epitope formed by domain III & IV of human epidermal growth factor receptor 3 (HER3) and antigen-binding proteins which compete therewith for binding, as well as fusion protein or conjugate comprising these. The invention also provides nucleic acid molecule comprising a sequence encoding said antigen binding proteins, vectors comprising the nucleic acid, and cells and pharmaceuticals comprising the antigen binding protein, the fusion protein, the nucleic acid, or the vector. The invention also provides the antigen binding protein, the fusion protein or conjugate, the nucleic acid, the vector, the cell, or the pharmaceutical for use as a medicament.Type: GrantFiled: September 15, 2017Date of Patent: May 18, 2021Inventors: Roland Kontermann, Lisa Schmitt, Meike Hutt, Oliver Seifert, Monilola Olayioye, Michael Hust, Stefan Dübel, Jonas Zantow
-
Publication number: 20210101975Abstract: The present invention pertains to antigen recognizing constructs against COL6A3 antigens. The invention in particular provides novel engineered T cell receptor (TCR) based molecules which are selective and specific for the tumor expressing antigen COL6A3. The TCR of the invention, and COL6A3 antigen binding fragments derived therefrom, are of use for the diagnosis, treatment and prevention of COL6A3 expressing cancerous diseases. Further provided are nucleic acids encoding the antigen recognizing constructs of the invention, vectors comprising these nucleic acids, recombinant cells expressing the antigen recognizing constructs and pharmaceutical compositions comprising the compounds of the invention.Type: ApplicationFiled: December 17, 2020Publication date: April 8, 2021Inventors: Felix UNVERDORBEN, Sebastian BUNK, Martin HOFMANN, Dominik MAURER, Meike HUTT, Claudia WAGNER, Leonie ALTEN
-
Publication number: 20210048442Abstract: The present invention relates to a method for the characterization of peptide:MHC binding polypeptides, e.g. by mass spectrometry and an analysis of the recognized peptide space, i.e. in order to identify peptides that can be bound in the context of their presentation by MHC, and those who cannot be bound.Type: ApplicationFiled: August 11, 2020Publication date: February 18, 2021Inventors: Heiko SCHUSTER, Meike HUTT, Toni WEINSCHENK, Sebastian BUNK, Oliver SCHOOR, Linus BACKERT, Martin HOFMANN, Jens FRITSCHE, Felix UNVERDORBEN, Gisela SCHIMMACK, Florian SALOPIATA
-
Publication number: 20210032370Abstract: The present invention concerns bispecific antigen binding proteins directed against MHC presented target antigens (TA). The invention in particular provides bispecific antigen binding proteins comprising at least two antigen binding sites (A and B), wherein the antigen binding site A binds to CD3 and the antigen binding site B binds to a target antigenic (TA) peptide/MHC complex. The bispecific antigen binding proteins of the invention comprise, in particular, the CDRs of the VL and VH domains of novel engineered anti-CD3 antibodies having a reduced affinity. The bispecific antigen binding proteins of the invention are of use for the diagnosis, treatment and prevention of TA associated diseases, such as tumor-associated antigen (TAA) expressing cancerous diseases.Type: ApplicationFiled: July 30, 2020Publication date: February 4, 2021Inventors: Gabriele PSZOLLA, Martin HOFMANN, Felix UNVERDORBEN, Meike HUTT, Dominik MAURER, Sebastian BUNK
-
Publication number: 20210032361Abstract: The present invention concerns antigen binding proteins specifically binding melanoma associated antigen A (MAGE-A) protein-derived antigens. The invention in particular provides antigen binding proteins which specifically bind to the MAGE-A antigenic peptide comprising or consisting of SEQ ID NO: 1 in a complex with a major histocombatibility (MHC) protein. The antigen binding proteins of the invention contain, in particular, the complementary determining regions (CDRs) of novel engineered T cell receptors (TCRs) that specifically bind to said MAGE-A peptide/MHC complex. The antigen binding proteins of the invention are of use for the diagnosis, treatment and prevention of MAGE-A expressing cancerous diseases. Further provided are nucleic acids encoding the antigen binding proteins of the invention, vectors comprising these nucleic acids, recombinant cells expressing the antigen binding proteins and pharmaceutical compositions comprising the antigen binding proteins of the invention.Type: ApplicationFiled: July 30, 2020Publication date: February 4, 2021Inventors: Meike HUTT, Felix UNVERDORBEN, Sebastian BUNK, Dominik MAURER, Martin HOFMANN, Gabriele PSZOLLA, Sara YOUSEF, Claudia WAGNER, Frank SCHWOEBEL, Heiko SCHUSTER
-
Patent number: 10889645Abstract: The present invention pertains to antigen recognizing constructs against COL6A3 antigens. The invention in particular provides novel engineered T cell receptor (TCR) based molecules which are selective and specific for the tumor expressing antigen COL6A3. The TCR of the invention, and COL6A3 antigen binding fragments derived therefrom, are of use for the diagnosis, treatment and prevention of COL6A3 expressing cancerous diseases. Further provided are nucleic acids encoding the antigen recognizing constructs of the invention, vectors comprising these nucleic acids, recombinant cells expressing the antigen recognizing constructs and pharmaceutical compositions comprising the compounds of the invention.Type: GrantFiled: January 7, 2020Date of Patent: January 12, 2021Assignee: IMMATICS BIOTECHNOLOGIES GMBHInventors: Felix Unverdorben, Sebastian Bunk, Martin Hofmann, Dominik Maurer, Meike Hutt, Claudia Wagner, Leonie Alten