Patents by Inventor Melvin Hildebrand

Melvin Hildebrand has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8933175
    Abstract: A composition comprising a polyethylene wherein the composition is enriched in polymer molecules having topological variations by an enrichment factor ? and wherein the composition displays a long chain branching frequency of greater than about 0.5 long chain branches per 1000 total carbon atoms. A composition comprising an isolated Ziegler-catalyzed polyethylene having a long chain branching frequency of greater than about 0.5 long chain branches per 1000 total carbon atoms at the high molecular weight end.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: January 13, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Youlu Yu, Chung C. Tso, David C. Rohlfing, Paul J. Deslauriers, Melvin Hildebrand, Max P. McDaniel, Qing Yang
  • Publication number: 20130059982
    Abstract: A composition comprising a polyethylene wherein the composition is enriched in polymer molecules having topological variations by an enrichment factor ? and wherein the composition displays a long chain branching frequency of greater than about 0.5 long chain branches per 1000 total carbon atoms. A composition comprising an isolated Ziegler-catalyzed polyethylene having a long chain branching frequency of greater than about 0.5 long chain branches per 1000 total carbon atoms at the high molecular weight end.
    Type: Application
    Filed: August 30, 2012
    Publication date: March 7, 2013
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Youlu YU, Chung C. TSO, David C. ROHLFING, Paul J. DESLAURIERS, Melvin HILDEBRAND, Max P. MCDANIEL, Qing YANG
  • Patent number: 7691633
    Abstract: Polymer fractions such as polyethylene fractions can be produced that have a PDI less than about 2.3 and a Mw greater than about 1,000,000 g/mol, 3,000,000 g/mol, or 6,000,000 g/mol. Such polyethylene fractions are separated from a UHMWPE parent polymer by first dissolving the parent polymer in a relatively good solvent. The conditions employed for such dissolution are selected to reduce the degradation of the parent polymer. The resulting parent solution is transported into a fractionation column in which a support is disposed. The fractionation column is thereafter operated at conditions effective to form a precipitate on the support comprising the desired polyethylene fraction. The polyethylene fraction may then be recovered from the fractionation column by repeatedly displacing a solvent/non-solvent mixture into the column to dissolve the polyethylene fraction. The relative concentrations of the solvent and the non-solvent are based on a solvent gradient profile of the polyethylene parent polymer.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: April 6, 2010
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Chung C. Tso, Melvin Hildebrand, Paul J. DesLauriers, Youlu Yu
  • Publication number: 20070249053
    Abstract: Polymer fractions such as polyethylene fractions can be produced that have a PDI less than about 2.3 and a Mw greater than about 1,000,000 g/mol, 3,000,000 g/mol, or 6,000,000 g/mol. Such polyethylene fractions are separated from a UHMWPE parent polymer by first dissolving the parent polymer in a relatively good solvent. The conditions employed for such dissolution are selected to reduce the degradation of the parent polymer. The resulting parent solution is transported into a fractionation column in which a support is disposed. The fractionation column is thereafter operated at conditions effective to form a precipitate on the support comprising the desired polyethylene fraction. The polyethylene fraction may then be recovered from the fractionation column by repeatedly displacing a solvent/non-solvent mixture into the column to dissolve the polyethylene fraction. The relative concentrations of the solvent and the non-solvent are based on a solvent gradient profile of the polyethylene parent polymer.
    Type: Application
    Filed: June 21, 2007
    Publication date: October 25, 2007
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Chung Tso, Melvin Hildebrand, Paul DesLauriers, Youlu Yu
  • Patent number: 7241620
    Abstract: Polymer fractions such as polyethylene fractions can be produced that have a PDI less than about 2.3 and a Mw greater than about 1,000,000 g/mol, 3,000,000 g/mol, or 6,000,000 g/mol. Such polyethylene fractions are separated from a UHMWPE parent polymer by first dissolving the parent polymer in a relatively good solvent. The conditions employed for such dissolution are selected to reduce the degradation of the parent polymer. The resulting parent solution is transported into a fractionation column in which a support is disposed. The fractionation column is thereafter operated at conditions effective to form a precipitate on the support comprising the desired polyethylene fraction. The polyethylene fraction may then be recovered from the fractionation column by repeatedly displacing a solvent/non-solvent mixture into the column to dissolve the polyethylene fraction. The relative concentrations of the solvent and the non-solvent are based on a solvent gradient profile of the polyethylene parent polymer.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: July 10, 2007
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Chung C. Tso, Melvin Hildebrand, Paul J. DesLauriers, Youlu Yu
  • Publication number: 20050154169
    Abstract: Polymer fractions such as polyethylene fractions can be produced that have a PDI less than about 2.3 and a Mw greater than about 1,000,000 g/mol, 3,000,000 g/mol, or 6,000,000 g/mol. Such polyethylene fractions are separated from a UHMWPE parent polymer by first dissolving the parent polymer in a relatively good solvent. The conditions employed for such dissolution are selected to reduce the degradation of the parent polymer. The resulting parent solution is transported into a fractionation column in which a support is disposed. The fractionation column is thereafter operated at conditions effective to form a precipitate on the support comprising the desired polyethylene fraction. The polyethylene fraction may then be recovered from the fractionation column by repeatedly displacing a solvent/non-solvent mixture into the column to dissolve the polyethylene fraction. The relative concentrations of the solvent and the non-solvent are based on a solvent gradient profile of the polyethylene parent polymer.
    Type: Application
    Filed: January 9, 2004
    Publication date: July 14, 2005
    Inventors: Chung Tso, Melvin Hildebrand, Paul DesLauriers, Youlu Yu