Patents by Inventor Meng-Chun Chang

Meng-Chun Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160099331
    Abstract: A device having an epitaxial region and dual metal-semiconductor alloy surfaces is provided. The epitaxial region includes an upward facing facet and a downward facing facet. The upward facing facet has a first metal-semiconductor alloy surface and the downward facing facet has a second metal-semiconductor alloy surface, wherein the first metal-semiconductor alloy is different than the second metal-semiconductor alloy.
    Type: Application
    Filed: December 14, 2015
    Publication date: April 7, 2016
    Inventors: Clement Hsingjen Wann, Sey-Ping Sun, Ling-Yen Yeh, Chi-Yuan Shih, Li-Chi Yu, Chun Hsiung Tsai, Chin-Hsiang Lin, Neng-Kuo Chen, Meng-Chun Chang, Ta-Chun Ma, Gin-Chen Huang, Yen-Chun Huang
  • Patent number: 9214556
    Abstract: A method includes growing an epitaxy semiconductor region at a major surface of a wafer. The epitaxy semiconductor region has an upward facing facet facing upwardly and a downward facing facet facing downwardly. The method further includes forming a first metal silicide layer contacting the upward facing facet, and forming a second metal silicide layer contacting the downward facing facet. The first metal silicide layer and the second metal silicide layer comprise different metals.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: December 15, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Clement Hsingjen Wann, Sey-Ping Sun, Ling-Yen Yeh, Chi-Yuan Shih, Li-Chi Yu, Chun Hsiung Tsai, Chin-Hsiang Lin, Neng-Kuo Chen, Meng-Chun Chang, Ta-Chun Ma, Gin-Chen Huang, Yen-Chun Huang
  • Publication number: 20150303118
    Abstract: Fin structures are formed on a substrate. An isolation region is between the fin structures. The fin structures comprise epitaxial regions extending above the isolation region. Each of the epitaxial regions has a widest mid-region between an upper-surface and an under-surface. A dual-layer etch stop is formed over the fin structures and comprises a first sub-layer and a second sub-layer. The first sub-layer is along the upper- and under-surfaces and the isolation region. The second sub-layer is over the first sub-layer and along the upper-surfaces, and the second sub-layer merges together proximate the widest mid-regions of the epitaxial regions. Portions of the dual-layer etch stop are removed from the upper- and under-surfaces. A dielectric layer is formed on the upper- and under-surfaces. A metal layer is formed on the dielectric layer on the upper-surfaces. A barrier layer is formed on the metal layer and along the under-surfaces.
    Type: Application
    Filed: April 21, 2014
    Publication date: October 22, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Sung-Li Wang, Neng-Kuo Chen, Ding-Kang Shih, Meng-Chun Chang, Yi-An Lin, Gin-Chen Huang, Chen-Feng Hsu, Hau-Yu Lin, Chih-Hsin Ko, Sey-Ping Sun, Clement Hsingjen Wann
  • Publication number: 20150236016
    Abstract: A method of fabricating a semiconductor device comprises forming a fin structure extending from a substrate, the fin structure comprising a first fin, a second fin, and a third fin between the first fin and the second fin. The method further comprises forming germanide over a first facet of the first fin, a second facet of the second fin, and a substantially planar surface of the third fin, wherein the first facet forms a first acute angle with a major surface of the substrate and is substantially mirror symmetric with the second facet, and wherein the substantially planar surface of the third fin forms a second acute angle smaller than the first acute angle with the major surface of the substrate.
    Type: Application
    Filed: April 30, 2015
    Publication date: August 20, 2015
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Wen Liu, Chi-Yuan Shih, Li-Chi Yu, Meng-Chun Chang, Ting-Chu Ko, Chung-Hsien Chen
  • Patent number: 9048317
    Abstract: The disclosure relates to a semiconductor device. An exemplary structure for a contact structure for a semiconductor device comprises a substrate comprising a major surface; a fin structure extending upward from the substrate major surface, wherein the fin structure comprises a first fin, a second fin, and a third fin between the first fin and second fin; a first germanide over the first fin, wherein a first bottom surface of the first germanide has a first acute angle to the major surface; a second germanide over the second fin on a side of the third fin opposite to first germanide substantially mirror-symmetrical to each other; and a third germanide over the third fin, wherein a third bottom surface of the third germanide has a third acute angle to the major surface less than the first acute angle.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: June 2, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Wen Liu, Chi-Yuan Shih, Li-Chi Yu, Meng-Chun Chang, Ting-Chu Ko, Chung-Hsien Chen
  • Patent number: 9032015
    Abstract: A data distributing and accessing method for sharing a file via a network system includes steps of: dividing the file into a plurality of blocks; distributing the blocks in a plurality of data hosts interconnected via the network system; one of the data hosts receiving a file-reading request from a user host and issuing collecting requests to other data hosts to collect the blocks from the data hosts; and transferring the collected blocks from the data hosts to the user host to be combined into the file.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: May 12, 2015
    Assignee: Via Technologies, Inc.
    Inventors: Meng-Chun Chang, Hung-Wen Yu
  • Publication number: 20150041918
    Abstract: A method includes growing an epitaxy semiconductor region at a major surface of a wafer. The epitaxy semiconductor region has an upward facing facet facing upwardly and a downward facing facet facing downwardly. The method further includes forming a first metal silicide layer contacting the upward facing facet, and forming a second metal silicide layer contacting the downward facing facet. The first metal silicide layer and the second metal silicide layer comprise different metals.
    Type: Application
    Filed: August 9, 2013
    Publication date: February 12, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Clement Hsingjen Wann, Sey-Ping Sun, Ling-Yen Yeh, Chi-Yuan Shih, Li-Chi Yu, Chun Hsiung Tsai, Chin-Hsiang Lin, Neng-Kuo Chen, Meng-Chun Chang, Ta-Chun Ma, Gin-Chen Huang, Yen-Chun Huang
  • Publication number: 20150035017
    Abstract: The disclosure relates to a semiconductor device. An exemplary structure for a contact structure for a semiconductor device comprises a substrate comprising a major surface; a fin structure extending upward from the substrate major surface, wherein the fin structure comprises a first fin, a second fin, and a third fin between the first fin and second fin; a first germanide over the first fin, wherein a first bottom surface of the first germanide has a first acute angle to the major surface; a second germanide over the second fin on a side of the third fin opposite to first germanide substantially mirror-symmetrical to each other; and a third germanide over the third fin, wherein a third bottom surface of the third germanide has a third acute angle to the major surface less than the first acute angle.
    Type: Application
    Filed: July 31, 2013
    Publication date: February 5, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Wen Liu, Chi-Yuan Shih, Li-Chi Yu, Meng-Chun Chang, Ting-Chu Ko, Chung-Hsien Chen
  • Publication number: 20150001584
    Abstract: The present disclosure relates to a device and method for strain inducing or high mobility channel replacement in a semiconductor device. The semiconductor device is configured to control current from a source to a drain through a channel region by use of a gate. A strain inducing or high mobility layer produced in the channel region between the source and drain can result in better device performance compared to Si, faster devices, faster data transmission, and is fully compatible with the current semiconductor manufacturing infrastructure.
    Type: Application
    Filed: September 8, 2014
    Publication date: January 1, 2015
    Inventors: Yu-Lien Huang, Meng-Chun Chang
  • Patent number: 8828813
    Abstract: The present disclosure relates to a device and method for strain inducing or high mobility channel replacement in a semiconductor device. The semiconductor device is configured to control current from a source to a drain through a channel region by use of a gate. A strain inducing or high mobility layer produced in the channel region between the source and drain can result in better device performance compared to Si, faster devices, faster data transmission, and is fully compatible with the current semiconductor manufacturing infrastructure.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: September 9, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Lien Huang, Meng-Chun Chang
  • Publication number: 20130270628
    Abstract: The present disclosure relates to a device and method for strain inducing or high mobility channel replacement in a semiconductor device. The semiconductor device is configured to control current from a source to a drain through a channel region by use of a gate. A strain inducing or high mobility layer produced in the channel region between the source and drain can result in better device performance compared to Si, faster devices, faster data transmission, and is fully compatible with the current semiconductor manufacturing infrastructure.
    Type: Application
    Filed: April 13, 2012
    Publication date: October 17, 2013
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Lien Huang, Meng-Chun Chang
  • Publication number: 20080294646
    Abstract: A data distributing and accessing method for sharing a file via a network system includes steps of: dividing the file into a plurality of blocks; distributing the blocks in a plurality of data hosts interconnected via the network system; one of the data hosts receiving a file-reading request from a user host and issuing collecting requests to other data hosts to collect the blocks from the data hosts; and transferring the collected blocks from the data hosts to the user host to be combined into the file.
    Type: Application
    Filed: November 27, 2007
    Publication date: November 27, 2008
    Applicant: VIA TECHNOLOGIES, INC.
    Inventors: Meng-Chun Chang, Hung-Wen Yu
  • Patent number: 7310393
    Abstract: A method and apparatus for the signal synchronization of an orthogonal frequency division multiplexing system includes a delay conjugate multiplication module, a phase processor and an edge detector. It provides estimates for the boundaries of inter-symbol interference free region by utilizing the characteristics of a guard interval in combination with the techniques of the delay conjugate multiplication module, phase differential operation, symbol-by-symbol average operation, and edge detection. The method determines a fixed optimal threshold for directly separating the inter-symbol interference region in a mobile environment to obtain an inter-symbol interference free version of symbol information.
    Type: Grant
    Filed: April 27, 2004
    Date of Patent: December 18, 2007
    Assignee: Industrial Technology Research Institute
    Inventors: Chorng-Ren Sheu, Meng-Chun Chang, Chia-Chi Huang, Yu-jung Chang
  • Patent number: 7236786
    Abstract: Methods and systems for providing fast handoff in WLAN-like communications system construct a caching candidate set based upon a weighted handoff tendency coefficient. The weighted handoff tendency coefficient is based upon the handoff matrix and the weighting factor. The handoff matrix is an adaptive two-dimensional array that provides a list of nearby access points relative to a mobile station and the weighting factor is a value that prioritizes the nearby access points based upon a signal quality indication. A home access point, once it is triggered to initialize proactive caching, provides the caching candidate set with registration data of the mobile station before a transfer of a connection between the home access point and one of the access points on the caching candidate set.
    Type: Grant
    Filed: June 22, 2004
    Date of Patent: June 26, 2007
    Assignee: Industrial Technology Research Institute
    Inventors: Jia-Ching Shen, Yih-Shen Chen, Chung-Ju Chang, Yung-Han Chen, Yi-Ting Wang, Meng-Chun Chang
  • Publication number: 20050105659
    Abstract: A method and apparatus for the signal synchronization of an OFDM system are proposed including a delay conjugate multiplication module, a phase processor and an edge detector. It provides estimates for the boundaries of ISI-free region by utilizing the characteristics of the guard interval and combining the techniques of the delay conjugate multiplication module, phase differential operation, symbol-by-symbol average operation, and edge detection. This method provides an improved performance in a multi-path fading channel with large delay spread, and can be utilized in a broadcasting system, such as the DAB and DVB-T systems. This invention is easy to determine a fixed optimal threshold that can directly separate the ISI region in any mobile environment, thereby most symbol information with ISI-free version can be obtained.
    Type: Application
    Filed: April 27, 2004
    Publication date: May 19, 2005
    Inventors: Chorng-Ren Sheu, Meng-Chun Chang, Chia-Chi Huang, Yu-jung Chang