Patents by Inventor Michael F. Hoey

Michael F. Hoey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040111022
    Abstract: A catheter based loop antenna is delivered to the pericardial space through an opening in the chest. The size of the antenna may be modified to selectively view tissue for imaging or spectrographic analysis purposes.
    Type: Application
    Filed: August 15, 2003
    Publication date: June 10, 2004
    Inventors: James R. Grabek, Michael F. Hoey
  • Patent number: 6736810
    Abstract: The present invention provides an apparatus and a method for producing a virtual electrode within or upon a tissue to be treated with radio frequency alternating electric current, such tissues including but not limited to liver, lung, cardiac, prostate, breast, and vascular tissues and neoplasms. An apparatus in accord with the present invention includes a supply of a conductive or electrolytic fluid to be provided to the patient, an alternating current generator, and a processor for creating, maintaining, and controlling the ablation process by the interstitial or surficial delivery of the fluid to a tissue and the delivery of electric power to the tissue via the virtual electrode.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: May 18, 2004
    Assignee: Medtronic, Inc.
    Inventors: Michael F. Hoey, Mark A. Christopherson, Steven M. Goetz
  • Publication number: 20040092926
    Abstract: The present invention provides an apparatus and a method for producing a virtual electrode within or upon a tissue to be treated with radio frequency alternating electric current, such tissues including but not limited to liver, lung, cardiac, prostate, breast, and vascular tissues and neoplasms. An apparatus in accord with the present invention includes a supply of a conductive or electrolytic fluid to be provided to the patient, an alternating current generator, and a processor for creating, maintaining, and controlling the ablation process by the interstitial or surficial delivery of the fluid to a tissue and the delivery of electric power to the tissue via the virtual electrode.
    Type: Application
    Filed: October 31, 2003
    Publication date: May 13, 2004
    Applicant: Medtronic, Inc.
    Inventors: Michael F. Hoey, Mark A. Christopherson, Steven M. Goetz
  • Publication number: 20040073206
    Abstract: Methods are provided to assist a surgeon in ablating conduction paths in tissue, such as a heart. In one embodiment, the invention presents a method that includes placing a guide in contact with the tissue to be ablated, applying an ablation probe to the tissue using the guide to assist in control of movement of the ablation probe, measuring the effectiveness of the ablation probe in ablation of the conduction paths, and deactivating the ablation probe when the measured effectiveness meets a desired level. Placement of the guide in contact with the tissue allows the surgeon to more easily sever the conduction path to form a lesion in a desired location.
    Type: Application
    Filed: November 7, 2003
    Publication date: April 15, 2004
    Applicant: Iotek, Inc.
    Inventors: Frederick J. Foley, James S. Sharrow, Lorraine E. Reeve, Thomas G. Adelman, Michael F. Hoey
  • Patent number: 6716211
    Abstract: An electrocautery instrument is provided with a hollow electrode having a source of conductive fluid coupled to a proximal end thereof. Conductive fluid is communicated through said electrode and expelled out of the distal end thereof during electrocautery, forming a “virtual electrode.” The infused conductive liquid conducts the RF electrocautery energy away from the conductive electrode, thereby displacing the region of thermal generation and reducing the extent of burns and perforations caused by conventional electrocautery electrodes. In one embodiment, the electrode is partially disposed within and extends distally out of a retractable suction tube, such that smoke and fluid are aspirated from the electrocautery site. When the suction tube is fully advanced, the electrode is concealed therein, enabling suction without electrocautery to be performed.
    Type: Grant
    Filed: September 18, 2001
    Date of Patent: April 6, 2004
    Assignee: Medtronic, Inc.
    Inventors: Peter M. J. Mulier, Michael F. Hoey
  • Patent number: 6706039
    Abstract: A method and apparatus for creating a virtual electrode to ablate bodily tissue. The apparatus includes an outer tube, a first electrode, an inner tube and a second electrode. The outer tube is fluidly connected to a source of conductive fluid and defines a proximal end and a distal end. The distal end includes an opening for delivering conductive fluid from the outer tube. The first electrode is disposed at the distal end of the outer tube for applying a current to conductive fluid delivered from the outer tube. The inner tube is coaxially received within the outer tube and is connected to a source of conductive fluid. The inner tube defines a proximal end and a distal end, with the distal end forming an opening for delivering conductive fluid from the inner tube. Finally, the second electrode is disposed at the distal end of the inner tube for applying a current to conductive fluid delivered from the inner tube.
    Type: Grant
    Filed: May 25, 2001
    Date of Patent: March 16, 2004
    Assignee: Medtronic, Inc.
    Inventors: Peter M. J. Mulier, Michael F. Hoey
  • Patent number: 6663622
    Abstract: Devices and a method are provided to assist a surgeon in ablating conduction paths in tissue, such as a heart. A device can be configured to operate as a template that adheres to the tissue surface, and allows the surgeon to more easily sever the conduction path to form a lesion in a desired location. In particular, the template can be used to guide the surgeon's use of a surgical instrument along a desired ablation path. In some case, the template may incorporate hardware that structurally supports the instrument for travel along the ablation path. A surgical instrument such as an ablation probe, e.g., radio frequency, laser, ultrasonic, microwave, thermal, chemical, mechanical, or cryogenic ablation probe, may be used to sever the conduction paths. Measurements made substantially contemporaneously with the conduction path ablation operation may be used to evaluate whether the desired degree of ablation has been achieved.
    Type: Grant
    Filed: August 28, 2000
    Date of Patent: December 16, 2003
    Assignee: Iotek, Inc.
    Inventors: Frederick J. Foley, James S. Sharrow, Lorraine E. Reeve, Thomas G. Adelman, Michael F. Hoey
  • Patent number: 6641604
    Abstract: Devices and methods of manipulating and stabilizing organ tissue, such as heart tissue. The devices, which are of varying sizes, shapes and conformations, generally include a seal member having a chamber with a wall and a skirt-like member that extends outward from the chamber wall for contact with a surface of an organ. The skirt-like member is substantially compliant and tacky, thereby promoting adhesion with the organ surface. Adherence of the device to the tissue may be enhance by the mechanical or hydraulic application of vacuum pressure. The methods describe steps for manipulating, including moving, lifting, immobilizing, turning and reorienting, organ tissues. Additional methods describe steps for manipulating the heart.
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: November 4, 2003
    Assignee: Iotek, Inc.
    Inventors: Thomas G. Adelman, Frederick J. Foley, James S. Sharrow, Lorraine E. Reeve, Michael F. Hoey
  • Publication number: 20030181902
    Abstract: An electrocautery device is disclosed. In accordance with one aspect of the invention, the electrocautery electrode/tip is provided with a hollow, conductive tube terminating at its distal end in a ball point type tip. Fluid, preferably conductive fluid, is applied to the proximal end of the hollow electrode/tip, and expelled from the distal end thereof during electrocautery. The ball point distal tip allows the distal tip to be directly applied to the tissue and “rolled” or slid along the tissue. This allows the distal tip to be moved across the tissue without dragging or snagging on the tissue. In addition, the conductive fluid expelled from the distal tip further lubricates the distal tip as it moves across the tissue. If conductive fluid is used, the conductive fluid emanating from the electrode/tip conducts the RF electrocautery energy away from the distal tip so that it is primarily the fluid, rather than the distal tip that actually accomplishes the cauterizing of tissue.
    Type: Application
    Filed: April 11, 2003
    Publication date: September 25, 2003
    Applicant: Medtronic, Inc.
    Inventors: Peter M.J. Mulier, Michael F. Hoey
  • Patent number: 6623515
    Abstract: A surgical apparatus for delivering a conductive fluid to a target site for ablating bodily tissue. The apparatus includes a tube fluidly connected to a source of conductive fluid. The tube defines a proximal portion, a distal portion and a central pathway. The central pathway extends from the proximal portion to the distal portion and is configured to direct flow of conductive fluid to the distal portion. The distal portion is configured for placement at a target site of bodily tissue and forms a helical slot. The helical slot is configured to allow flow of conductive fluid from the central pathway. Following delivery of the conductive fluid, an electrical current is applied to create a virtual electrode for ablating bodily tissue at the target site.
    Type: Grant
    Filed: August 29, 2001
    Date of Patent: September 23, 2003
    Assignee: Medtronic, Inc.
    Inventors: Peter M. J. Mulier, Michael F. Hoey
  • Patent number: 6613048
    Abstract: An electrosurgery medical device is enhanced with unique solution-assistance, and includes, in combination, co-operating device jaws including jaw portions for manipulating tissue, and a plurality of solution infusion openings defined and spaced along each of the jaw portions, for receiving electrolytic solution and infusing the solution onto and into tissue to be manipulated, along said jaw portions. As preferred, the device further includes at least one, and most preferably, many, longitudinal groove(s) along at least one and most preferably, both, of the jaw portions, with the solution infusion openings located in the groove or grooves. The solution is energized with RF energy and contributes to the functions and beneficial effects of the instrument. The solution exits the openings in the grooves at sufficient flow rates to separate substantially all the operative surfaces of the device from tissue, thereby substantially completely preventing adherence between the operative surfaces and tissue.
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: September 2, 2003
    Assignee: Medtronic, Inc.
    Inventors: Peter M. J. Mulier, Michael F. Hoey
  • Patent number: 6610060
    Abstract: An electrosurgery medical device is enhanced with unique solution-assistance, and comprises, in combination, co-operating device jaws including jaw portions for manipulating tissue, and a plurality of solution infusion openings defined and spaced along each of the jaw portions, for receiving electrolytic solution and infusing the solution onto and into tissue to be manipulated, along said jaw portions. As preferred, the device further comprises at least one, and most preferably, many, longitudinal groove(s) along at least one and most preferably, both, of the jaw portions, with the solution infusion openings located in the groove or grooves. The solution is energized with RF energy and contributes to the functions and beneficial effects of the instrument. The solution exits the openings in the grooves at sufficient flow rates to separate substantially all the operative surfaces of the device from tissue, thereby substantially completely preventing adherence between the operative surfaces and tissue.
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: August 26, 2003
    Assignee: Medtronic, Inc.
    Inventors: Peter M. J. Mulier, Michael F. Hoey
  • Publication number: 20030125637
    Abstract: Devices and methods for detecting vulnerable plaque within a blood vessel are disclosed. A catheter in accordance with the present invention includes an elongate shaft having a proximal end, a distal end, and an outer surface. At least one temperature sensor is disposed proximate to the distal end of the elongate shaft. In one preferred embodiment, the at least one temperature sensor is adapted to contact inner surface of the blood vessel. In another preferred embodiment, at least one temperature sensor is disposed within a channel defined by a body member that is disposed about the elongate shaft.
    Type: Application
    Filed: December 16, 2002
    Publication date: July 3, 2003
    Applicant: SciMed Life Systems, Inc., a Minnesota corporation
    Inventors: Jaydeep Y. Kokate, Eric M. DoBrava, Marwane S. Berrada, Scott Kimmel, Suzana Prstic, Michael F. Hoey, Avram Bar-Cohen, Paul A. Iaizzo
  • Patent number: 6585732
    Abstract: An electrocautery device is disclosed. In accordance with one aspect of the invention, the electrocautery electrode/tip is provided with a hollow, conductive tube terminating at its distal end in a ball point type tip. Fluid, preferably conductive fluid, is applied to the proximal end of the hollow electrode/tip, and expelled from the distal end thereof during electrocautery. The ball point distal tip allows the distal tip to be directly applied to the tissue and “rolled” or slid along the tissue. This allows the distal tip to be moved across the tissue without dragging or snagging on the tissue. In addition, the conductive fluid expelled from the distal tip further lubricates the distal tip as it moves across the tissue. If conductive fluid is used, the conductive fluid emanating from the electrode/tip conducts the RF electrocautery energy away from the distal tip so that it is primarily the fluid, rather than the distal tip that actually accomplishes the cauterizing of tissue.
    Type: Grant
    Filed: September 18, 2001
    Date of Patent: July 1, 2003
    Assignee: Medtronic, Inc.
    Inventors: Peter M. J. Mulier, Michael F. Hoey
  • Patent number: 6558314
    Abstract: Devices and methods of manipulating and stabilizing organ tissue, such as heart tissue. The devices, which are of varying sizes, shapes and conformations, generally include a seal member having a chamber with a wall and a skirt-like member that extends outward from the chamber wall for contact with a surface of an organ. The skirt-like member is substantially compliant and tacky, thereby promoting adhesion with the organ surface. Adherence of the device to the tissue may be enhance by the mechanical or hydraulic application of vacuum pressure. The methods describe steps for manipulating, including moving, lifting, immobilizing, turning and reorienting, organ tissues. Additional methods describe steps for manipulating the heart.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: May 6, 2003
    Assignee: Iotek, Inc.
    Inventors: Thomas G. Adelman, Frederick J. Foley, James S. Sharrow, Lorraine E. Reeve, Michael F. Hoey
  • Publication number: 20030073989
    Abstract: The present invention provides an apparatus and a method for producing a virtual electrode within or upon a tissue to be treated with radio frequency alternating electric current, such tissues including but not limited to liver, lung, cardiac, prostate, breast, and vascular tissues and neoplasms. An apparatus in accord with the present invention includes a supply of a conductive or electrolytic fluid to be provided to the patient, an alternating current generator, and a processor for creating, maintaining, and controlling the ablation process by the interstitial or surficial delivery of the fluid to a tissue and the delivery of electric power to the tissue via the virtual electrode.
    Type: Application
    Filed: April 24, 2002
    Publication date: April 17, 2003
    Applicant: Medtronic, Inc.
    Inventors: Michael F. Hoey, Mark A. Christopherson, Steven M. Goetz
  • Patent number: 6539265
    Abstract: The present invention provides an apparatus method for performing rf intraluminal reduction and/or occlusion with a virtual electrode. An apparatus in accord with the present invention includes a catheter and a guide wire. The guide wire includes a conductive core having a proximal end electrically connected to a generator of rf current and an exposed distal end. An insulative material having disposed therein at least one microlumen for providing a conductive fluid to a target site within the lumen encases the guide wire.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: March 25, 2003
    Assignee: Medtronic, Inc.
    Inventors: Adel M. Medhkour, Michael F. Hoey, Peter M. J. Mulier
  • Patent number: 6537248
    Abstract: A surgical apparatus for delivering a conductive fluid to a target site for subsequent formation of a virtual electrode to ablate bodily tissue at the target site by applying a current to the delivered conductive fluid. The surgical apparatus includes an elongated device forming a helical needle. The helical needle is configured to engage bodily tissue and is hollow for delivering conductive fluid from a fluid source. Finally, the helical needle terminates in a needle tip. In one preferred embodiment, an electrode is associated with the helical needle for applying a current to conductive fluid delivered from the helical needle. During use, following delivery of conductive fluid, the electrode applies a current to the delivered conductive fluid for creating a virtual electrode. The virtual electrode ablates bodily tissue contacted by the conductive fluid.
    Type: Grant
    Filed: July 6, 1999
    Date of Patent: March 25, 2003
    Assignee: Medtronic, Inc.
    Inventors: Peter M. J. Mulier, Michael F. Hoey, Richard H. Comben
  • Publication number: 20030036789
    Abstract: A device for ablating tissue is provided. The device comprises a conductive element with a channel for irrigating fluid formed therein, which is in contact with a non-conductive microporous interface. All or a portion of the interface may be removable. When the interface is removed, a portion of the conductive element is exposed for use in ablating tissue. Methods of using the device and of removing the interface are also provided.
    Type: Application
    Filed: October 10, 2002
    Publication date: February 20, 2003
    Inventors: David E. Francischelli, Richard H. Comben, Michael F. Hoey, Rahul Mehra, Jon M. Ocel, Robert Pearson, Paul V. Trescony, Scott E. Jahns
  • Publication number: 20030032955
    Abstract: An electrosurgery medical device is enhanced with unique solution-assistance, and comprises, in combination, co-operating device jaws including jaw portions for manipulating tissue, and a plurality of solution infusion openings defined and spaced along each of the jaw portions, for receiving electrolytic solution and infusing the solution onto and into tissue to be manipulated, along said jaw portions. As preferred, the device further comprises at least one, and most preferably, many, longitudinal groove(s) along at least one and most preferably, both, of the jaw portions, with the solution infusion openings located in the groove or grooves. The solution is energized with RF energy and contributes to the functions and beneficial effects of the instrument. The solution exits the openings in the grooves at sufficient flow rates to separate substantially all the operative surfaces of the device from tissue, thereby substantially completely preventing adherence between the operative surfaces and tissue.
    Type: Application
    Filed: August 26, 2002
    Publication date: February 13, 2003
    Applicant: Medtronic, Inc.
    Inventors: Peter M.J. Mulier, Michael F. Hoey