Patents by Inventor Michael Feldbaum

Michael Feldbaum has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070245557
    Abstract: A method for forming a via in an alumina protective layer on a structure such as a magnetic write head for use in perpendicular magnetic recording. A substrate such as an alumina fill layer, magnetic shaping layer, etc. is formed with region having a contact pad formed therein. A structure such as a magnetic pole, and or magnetic trailing shield, is formed over the substrate and is covered with a thick layer of alumina. The alumina can be applied by a high deposition rate process that does not form voids or seams in the alumina layer. The alumina layer can then be planarized by a chemical mechanical polishing process (CMP) and then a mask structure, such as a photoresist mask, is formed over the alumina layer. The mask structure is formed with an opening disposed over the contact pad. A reactive ion mill is then performed to remove portions of the alumina layer that are exposed at the opening in the mask, thereby forming a via in the alumina layer.
    Type: Application
    Filed: April 25, 2006
    Publication date: October 25, 2007
    Inventors: Amanda Baer, Hamid Balamane, Michael Feldbaum, Ming Jiang, Aron Pentek
  • Publication number: 20070245544
    Abstract: A method for making a write pole in a perpendicular magnetic recording write head uses a metal mask to pattern the primary resist and only ion milling during the subsequent patterning steps. A layer of primary resist is deposited over the magnetic write pole material and a metal mask layer is deposited on the primary resist layer. An imaging resist layer is formed on the metal mask layer and lithographically patterned generally in the desired shape of the write pole. Ion milling without a reactive gas is then performed over the imaging resist pattern to pattern the underlying metal mask layer, which is then used as the mask to define the shape of the primary resist pattern. Ion milling with oxygen is then performed over the metal mask pattern to pattern the underlying primary resist. Ion milling without a reactive gas is then performed over the primary resist pattern to form the underlying write pole.
    Type: Application
    Filed: April 25, 2006
    Publication date: October 25, 2007
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.V.
    Inventors: Donald Allen, Amanda Baer, Michael Feldbaum, Hung-Chin Guthrie, Aron Pentek
  • Patent number: 7275306
    Abstract: An improved damascene method of forming a write coil of a magnetic head. The method includes the steps of forming a hard mask layer over an insulator layer; forming a photoresist layer over the hard mask layer; performing an image patterning process to produce a write coil pattern in the photoresist layer; etching to remove portions of the hard mask layer in accordance with the write coil pattern; etching to remove portions of the insulator layer in accordance with the write coil pattern; etching to remove the remaining portion of the etched hard mask layer; after removing the etched hard mask layer, electroplating a material within the etched portion of the insulator material; and performing a chemical-mechanical polishing (CMP) process over the electroplated material. By removing the remainder of the hard mask material before the CMP, the quality of the CMP is improved.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: October 2, 2007
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Donald Giles Allen, Richard Jule Contreras, Michael Feldbaum, Murali Ramasubramanian
  • Publication number: 20070081278
    Abstract: A magnetic head having non-GMR shunt for perpendicular recording and method for making magnetic head having non-GMR shunt for perpendicular recording is disclosed. A shunt is provided for shunting charge from a read sensor. The shunt is formed co-planar with the read sensor and is fabricated using non-GMR materials.
    Type: Application
    Filed: October 11, 2005
    Publication date: April 12, 2007
    Inventors: Michael Feldbaum, Quang Le, Edward Lee, Neil Robertson, Charles Seegel
  • Patent number: 7159302
    Abstract: A method for manufacturing a write head having a small write pole tip that emits magnetic flux sufficient for effective perpendicular recording. The method creates a leading edge taper (LET) between the write pole tip and a magnetic flux guide to create a sufficient magnetic flux in the write pole. The LET is fabricated by ion milling away a sacrificial striated material whose layers have different rates of ion milling. The top layer of material thus mills away faster than lower layers, creating the required tapering of a negative mold. An endpoint material stops the milling. The LET magnetic material is then spattered into the negative mold, resulting in a well defined taper of magnetic flux shaping material extending the magnetic flux guide to the write pole tip, such that the write pole tip is able to emit sufficient magnetic flux for perpendicular recording.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: January 9, 2007
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Michael Feldbaum, Quang Le
  • Publication number: 20060231523
    Abstract: A perpendicular write head includes a beveled main pole having corners defining a track width and having a planarized surface and encapsulated on either side thereof and below by an alumina layer, the alumina layer having a polished surface and extending above the main pole on either side thereof as steps.
    Type: Application
    Filed: June 14, 2006
    Publication date: October 19, 2006
    Inventors: Amanda Baer, Hamid Balamane, Michael Feldbaum, Ming Jiang, Aron Pentek, Neil Robertson, Sue Zhang
  • Publication number: 20060218776
    Abstract: A magnetic head fabrication process in which a stencil layer is deposited upon a plurality of sensor layers. A photoresist mask in the desired read track width is fabricated upon the stencil layer. A reactive ion milling step is then conducted to remove the unmasked portions of the stencil layer. Where the stencil layer is composed of an organic compound, such as Duramide and/or diamond-like-carbon, a reactive ion milling step utilizing oxygen species produces a stencil of the present invention having exceptionally straight side walls with practically no undercuts. Thereafter, an ion milling step is undertaken in which the sensor layers that are not covered by the stencil are removed. The accurately formed stencil results in correspondingly accurately formed side walls of the remaining central sensor layers. A magnetic head sensor structure having a desired read track width and accurately formed side walls is thus fabricated.
    Type: Application
    Filed: March 30, 2005
    Publication date: October 5, 2006
    Inventors: Michael Feldbaum, Wipul Jayasekara, Mustafa Pinarbasi
  • Publication number: 20060168794
    Abstract: A method for constructing a magnetoresistive sensor that avoids shadowing effects of a mask structure during sensor definition. The method includes the use of an antireflective coating (ARC) and a photosensitive mask deposited there over. The photosensitive mask is formed to cover a desired sensor area, leaving non-sensor areas exposed. A reactive ion etch is performed to transfer the pattern of the photosensitive mask onto the underlying ARC layer. The reactive ion etch (RIE) is performed with a relatively high amount of platen power. The higher platen power increases ion bombardment of the wafer, thereby increasing the physical (ie mechanical) component of material removal relative to the chemical component. This increase in the physical component of material removal result in an increased rate of removal of the photosensitive mask material relative to the ion mill resistant mask.
    Type: Application
    Filed: January 28, 2005
    Publication date: August 3, 2006
    Inventors: Richard Contreras, Michael Feldbaum, Mustafa Pinarbasi
  • Patent number: 7075094
    Abstract: A system for improving drift compensation for ion mill applications defines a reference step for purposes of time duration. The reference step is controlled by an end point detector and monitored for use with subsequent process steps. The time duration for a subsequent step is adjusted as a percentage of the reference step. A time scaling factor determines the actual duration of the subsequent step. Rather than directly using times of step duration, the system uses a percentage of the reference step for the latter step. The duration of the reference step varies depending on the tool drift. The overall duration is changed in the same proportion as the duration of the reference step, and thereby compensates for the influence of drift on the end product.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: July 11, 2006
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Michael Feldbaum, Hung-Chin Guthrie, Wipul Pemsiri Jayasekara, Aron Pentek
  • Patent number: 7030035
    Abstract: To remove unwanted electrostatic charge from a substrate or substrate clamping mechanism in a plasma processing chamber following the plasma processing of the substrate, the process of shutting down the RF power supply is altered. Specifically, the present invention is a stepped RF power shut down sequence in which the RF power is lowered in a first step from full power to approximately 5 to 10 watts for a short period of time, such as approximately 1 second, and thereafter the RF power is turned off. As a result of this RF power shut down sequence, with its intermediate step, the plasma during the intermediate step acts to neutralize or discharge the electrostatic charge that has built up upon the wafer and/or clamping mechanism during full power operation. When the electrostatic charge has been removed, the wafer sticking problem is resolved.
    Type: Grant
    Filed: May 14, 2004
    Date of Patent: April 18, 2006
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Donald G. Allen, Richard Jule Contreras, Michael Feldbaum, Dominic Frank Truchetta
  • Publication number: 20060043280
    Abstract: A system for improving drift compensation for ion mill applications defines a reference step for purposes of time duration. The reference step is controlled by an end point detector and monitored for use with subsequent process steps. The time duration for a subsequent step is adjusted as a percentage of the reference step. A time scaling factor determines the actual duration of the subsequent step. Rather than directly using times of step duration, the system uses a percentage of the reference step for the latter step. The duration of the reference step varies depending on the tool drift. The overall duration is changed in the same proportion as the duration of the reference step, and thereby compensates for the influence of drift on the end product.
    Type: Application
    Filed: August 30, 2004
    Publication date: March 2, 2006
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Michael Feldbaum, Hung-Chin Guthrie, Wipul Jayasekara, Aron Pentek
  • Publication number: 20060002022
    Abstract: A first magnetic shield layer of the read head sensor is deposited upon a slider substrate surface. A patterned photoresist is then photolithographically fabricated upon the first magnetic shield layer with openings that are formed alongside the location at which the read sensor will be fabricated. An ion milling step is performed to create pockets within the surface of the magnetic shield layer at the location of the openings in the photoresist layer. The photoresist layer is then removed, and a fill layer is deposited across the surface of the magnetic shield layer in a depth greater than the depth of the pocket. Thereafter, a polishing step is conducted to remove portions of the fill layer down to the surface of the magnetic shield layer. A G1 insulation layer is deposited and a magnetic head sensor element is then fabricated upon the insulation layer.
    Type: Application
    Filed: June 30, 2004
    Publication date: January 5, 2006
    Inventors: Michael Feldbaum, John Kim, Murali Ramasubramanian, Howard Zolla
  • Publication number: 20050255705
    Abstract: To remove unwanted electrostatic charge from a substrate or substrate clamping mechanism in a plasma processing chamber following the plasma processing of the substrate, the process of shutting down the RF power supply is altered. Specifically, the present invention is a stepped RF power shut down sequence in which the RF power is lowered in a first step from full power to approximately 5 to 10 watts for a short period of time, such as approximately 1 second, and thereafter the RF power is turned off. As a result of this RF power shut down sequence, with its intermediate step, the plasma during the intermediate step acts to neutralize or discharge the electrostatic charge that has built up upon the wafer and/or clamping mechanism during full power operation. When the electrostatic charge has been removed, the wafer sticking problem is resolved.
    Type: Application
    Filed: May 14, 2004
    Publication date: November 17, 2005
    Inventors: Donald Allen, Richard Contreras, Michael Feldbaum, Dominic Truchetta
  • Publication number: 20050219744
    Abstract: A method for manufacturing a write head having a small write pole tip that emits magnetic flux sufficient for effective perpendicular recording. The method creates a leading edge taper (LET) between the write pole tip and a magnetic flux guide to create a sufficient magnetic flux in the write pole. The LET is fabricated by ion milling away a sacrificial striated material whose layers have different rates of ion milling. The top layer of material thus mills away faster than lower layers, creating the required tapering of a negative mold. An endpoint material stops the milling. The LET magnetic material is then spattered into the negative mold, resulting in a well defined taper of magnetic flux shaping material extending the magnetic flux guide to the write pole tip, such that the write pole tip is able to emit sufficient magnetic flux for perpendicular recording.
    Type: Application
    Filed: March 31, 2004
    Publication date: October 6, 2005
    Inventors: Michael Feldbaum, Quang Le
  • Publication number: 20050125990
    Abstract: An improved damascene method of forming a write coil of a magnetic head includes forming a hard mask layer over an insulator layer; forming a photoresist layer over the hard mask layer; performing an image patterning process to produce a write coil pattern in the photoresist layer; etching to remove portions of the hard mask layer in accordance with the write coil pattern; etching to remove portions of the insulator layer in accordance with the write coil pattern; etching to remove the remaining portion of the etched hard mask layer; electroplating a material comprising copper (Cu) within the etched portion of the insulator material; and performing a chemical-mechanical polishing (CMP) process over the resulting structure. By removing the remainder of the hard mask material before the CMP, the quality of the CMP is improved.
    Type: Application
    Filed: December 12, 2003
    Publication date: June 16, 2005
    Inventors: Donald Allen, Richard Contreras, Michael Feldbaum, Murali Ramasubramanian
  • Patent number: 6383938
    Abstract: A method of plasma etching of silicon that utilizes the plasma to provide laterally defined recess structures through a mask. The method is based on the variation of the plasma parameters to provide a well-controlled anisotropic etch, while achieving a very high etch rate, and a high selectivity with respect to a mask. A mixed gas is introduced into the vacuum chamber after the chamber is evacuated, and plasma is generated within the chamber. The substrate's surface is exposed to the plasma. Power sources are used for formation of the plasma discharge. An integrated control system is used to modulate the plasma discharge power and substrate polarization voltage levels.
    Type: Grant
    Filed: April 21, 1999
    Date of Patent: May 7, 2002
    Assignee: Alcatel
    Inventors: Tamarak Pandhumsoporn, Kevin Yu, Michael Feldbaum, Michel Puech
  • Publication number: 20010044213
    Abstract: A method of plasma etching of silicon that utilizes the plasma to provide laterally defined recess structures through a mask. The method is based on the variation of the plasma parameters to provide a well-controlled anisotropic etch, while achieving a very high etch rate, and a high selectivity with respect to a mask. A mixed gas is introduced into the vacuum chamber after the chamber is evacuated, and plasma is generated within the chamber. The substrate's surface is exposed to the plasma. Power sources are used for formation of the plasma discharge. An integrated control system is used to modulate the plasma discharge power and substrate polarization voltage levels.
    Type: Application
    Filed: April 21, 1999
    Publication date: November 22, 2001
    Inventors: TAMARAK PANDHUMSOPORN, KEVIN YU, MICHAEL FELDBAUM, MICHEL PUECH