Patents by Inventor Michael G. Miller

Michael G. Miller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10380018
    Abstract: An example apparatus for garbage collection can include a memory including a plurality of mixed mode blocks. The example apparatus can include a controller. The controller can be configured to write a first portion of sequential host data to the plurality of mixed mode blocks of the memory in a single level cell (SLC) mode. The controller can be configured to write a second portion of sequential host data to the plurality of mixed mode blocks in an XLC mode. The controller can be configured to write the second portion of sequential host data by performing a garbage collection operation. The garbage collection operation can include adding more blocks to a free block pool than a quantity of blocks that are written to in association with writing the second portion of sequential host data to the plurality of mixed mode blocks.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: August 13, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Kishore K. Muchherla, Sampath K. Ratnam, Peter Feeley, Michael G. Miller, Daniel J. Hubbard, Renato C. Padilla, Ashutosh Malshe, Harish R. Singidi
  • Publication number: 20190237146
    Abstract: Devices and techniques for initiating and controlling preemptive idle time read scans in a flash based storage system are disclosed. In an example, a memory device includes a NAND memory array and a memory controller to schedule and initiate read scans among multiple locations of the memory array, with such read scans being preemptively triggered during an idle (background) state of the memory device, thus reducing host latency during read and write operations in an active (foreground) state of the memory device. In an example, the optimization technique includes scheduling a read scan operation, monitoring an active or idle state of host IO operations, and preemptively initiating the read scan operation when entering an idle state, before the read scan operation is scheduled to occur. In further examples, the read scan may preemptively occur based on time-based scheduling, frequency-based conditions, or event-driven conditions triggering the read scan.
    Type: Application
    Filed: April 11, 2019
    Publication date: August 1, 2019
    Inventors: Ashutosh Malshe, Harish Reddy Singidi, Kishore Kumar Muchherla, Michael G. Miller, Sampath Ratman, Xu Zhang, Jie Zhou
  • Patent number: 10366763
    Abstract: Disclosed in some examples, are methods, systems, and machine readable mediums which compensate for read-disturb effects by shifting the read voltages used to read the value in a NAND cell based upon a read counter. For example, the NAND memory device may have a read counter that corresponds to a group of NAND cells (e.g., a page, a block, a superblock). Anytime a NAND cell in the group is read, the read counter may be incremented. The read voltage, Vread, may be adjusted based on the read counter to account for the read disturb voltage.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: July 30, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Harish Singidi, Kishore Kumar Muchherla, Gianni Stephen Alsasua, Ashutosh Malshe, Sampath Ratnam, Gary F. Besinga, Michael G. Miller
  • Patent number: 10359933
    Abstract: A memory having a memory controller is configured to operate a hybrid cache including a dynamic cache including x-level cell (XLC) (e.g., multi-level cell (MLC)) blocks and a static cache including single level cell (SLC) blocks. A method of operating the memory includes storing at least a portion of host data into the SLC blocks as static cache; and storing at least another portion of host data into XLC blocks in an SLC mode as dynamic cache responsive to a burst of host data being determined to be greater than the static cache can handle. At least one of the static cache or dynamic cache may be disabled based on monitoring a workload of the hybrid cache relative to a Total Bytes Written (TBW) specification, such as by counting program-erase (PE) cycles of different portions of memory, or responsive to the workload exceeding a predetermined threshold defining one or more switch points.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: July 23, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Kishore K. Muchherla, Ashutosh Malshe, Sampath K. Ratnam, Peter Feeley, Michael G. Miller, Christopher S. Hale, Renato C. Padilla
  • Patent number: 10340016
    Abstract: A memory device comprising a main memory and a controller operably connected to the main memory. The main memory can comprise a plurality of memory addresses, each corresponding to a single one of a plurality of word lines. Each memory address can be included in a tracked subset of the plurality of memory addresses. Each tracked subset can include memory addresses corresponding to more than one of the plurality of word lines. The controller is configured to track a number of read operations for each tracked subset, and to scan, in response to the number of read operations for a first tracked subset exceeding a first threshold value, a portion of data corresponding to each word line of the first tracked subset to determine an error count corresponding to each word line of the first tracked subset.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: July 2, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Renato C. Padilla, Jung Sheng Hoei, Michael G. Miller, Roland J. Awusie, Sampath K. Ratnam, Kishore Kumar Muchherla, Gary F. Besinga, Ashutosh Malshe, Harish R. Singidi
  • Patent number: 10331553
    Abstract: An example apparatus for garbage collection can include a memory including a plurality of mixed mode blocks. The example apparatus can include a controller. The controller can be configured to write a first portion of sequential host data to the plurality of mixed mode blocks of the memory in a single level cell (SLC) mode. The controller can be configured to write a second portion of sequential host data to the plurality of mixed mode blocks in an XLC mode. The controller can be configured to write the second portion of sequential host data by performing a garbage collection operation. The garbage collection operation can include adding more blocks to a free block pool than a quantity of blocks that are written to in association with writing the second portion of sequential host data to the plurality of mixed mode blocks.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: June 25, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Kishore K. Muchherla, Sampath K. Ratnam, Peter Feeley, Michael G. Miller, Daniel J. Hubbard, Renato C. Padilla, Ashutosh Malshe, Harish R. Singidi
  • Patent number: 10325668
    Abstract: Apparatuses and methods for operating mixed mode blocks. One example method can include tracking single level cell (SLC) mode cycles and extra level cell (XLC) mode cycles performed on the mixed mode blocks, maintaining a mixed mode cycle count corresponding to the mixed mode blocks, and adjusting the mixed mode cycle count differently for mixed mode blocks operated in a SLC mode than for mixed blocks operated in a XLC mode.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: June 18, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Kishore K. Muchherla, Ashutosh Malshe, Preston A. Thomson, Michael G. Miller, Gary F. Besinga, Scott A. Stoller, Sampath K. Ratnam, Renato C. Padilla, Peter Feeley
  • Patent number: 10303535
    Abstract: Apparatus include controllers configured to iteratively program a group of memory cells to respective desired data states; determine whether a power loss to the apparatus is indicated while iteratively programming the group of memory cells; and if a power loss to the apparatus is indicated, to change the desired data state of the particular memory cell before continuing with the programming. Apparatus further include controllers configured to read a particular memory cell of a last written page of memory cells, determine whether a threshold voltage of the particular memory cell is less than a particular voltage level, and to mark the last written page of memory cells as affected by power loss during a programming operation of the last written page of memory cells when the threshold voltage of the particular memory cell is determined to be higher than the particular voltage level.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: May 28, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Michael G. Miller, Ashutosh Malshe, Violante Moschiano, Peter Feeley, Gary F. Besinga, Sampath K. Ratnam, Walter Di-Francesco, Renato C. Padilla, Jr., Yun Li, Kishore Kumar Muchherla
  • Publication number: 20190155744
    Abstract: An example method of the present disclosure includes, responsive to a loss of last written page information by a memory system, initiating a last written page search to determine last written page information of a memory device, where the last written page search is initiated via a command from a controller of the memory system to the memory device, responsive to receiving the command, performing the last written page search on the memory device, and providing the last written page information to the controller.
    Type: Application
    Filed: November 21, 2017
    Publication date: May 23, 2019
    Inventors: Dheeraj Srinivasan, Ali Mohammadzadeh, Michael G. Miller, Xiaoxiao Zhang, Jung Sheng Hoei
  • Patent number: 10283205
    Abstract: Devices and techniques for initiating and controlling preemptive idle time read scans in a flash based storage system are disclosed. In an example, a memory device includes a NAND memory array and a memory controller to schedule and initiate read scans among multiple locations of the memory array, with such read scans being preemptively triggered during an idle (background) state of the memory device, thus reducing host latency during read and write operations in an active (foreground) state of the memory device. In an example, the optimization technique includes scheduling a read scan operation, monitoring an active or idle state of host IO operations, and preemptively initiating the read scan operation when entering an idle state, before the read scan operation is scheduled to occur. In further examples, the read scan may preemptively occur based on time-based scheduling, frequency-based conditions, or event-driven conditions triggering the read scan.
    Type: Grant
    Filed: September 30, 2017
    Date of Patent: May 7, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Ashutosh Malshe, Harish Singidi, Kishore Kumar Muchherla, Michael G. Miller, Sampath Ratnam, John Zhang, Jie Zhou
  • Publication number: 20190130981
    Abstract: Devices and techniques for detecting power loss in NAND memory devices are disclosed herein. A memory controller may calibrate a first read level for a first physical page of a number of physical pages from an initial first read level position to a calibrated first read level position. The first read level may be between a first threshold voltage distribution corresponding to a first logical state of the at least four logical states and a second threshold voltage distribution corresponding to a second logical state of the at least four logical states. Also, the first threshold voltage distribution may be a highest threshold voltage distribution for the first physical page. The memory controller may calibrate a second read level for the first physical page that is lower than the first read level from an initial second read level position to a calibrated first read level position.
    Type: Application
    Filed: September 12, 2018
    Publication date: May 2, 2019
    Inventors: Michael G. Miller, Kishore Kumar Muchherla, Harish Reddy Singidi, Ting Luo, Ashutosh Malshe, Preston Thomson, Jianmin Huang
  • Publication number: 20190103164
    Abstract: Devices and techniques for initiating and controlling preemptive idle time read scans in a flash based storage system are disclosed. In an example, a memory device includes a NAND memory array and a memory controller to schedule and initiate read scans among multiple locations of the memory array, with such read scans being preemptively triggered during an idle (background) state of the memory device, thus reducing host latency during read and write operations in an active (foreground) state of the memory device. In an example, the optimization technique includes scheduling a read scan operation, monitoring an active or idle state of host IO operations, and preemptively initiating the read scan operation when entering an idle state, before the read scan operation is scheduled to occur. In further examples, the read scan may preemptively occur based on time-based scheduling, frequency-based conditions, or event-driven conditions triggering the read scan.
    Type: Application
    Filed: September 30, 2017
    Publication date: April 4, 2019
    Inventors: Ashutosh Malshe, Harish Singidi, Kishore Kumar Muchherla, Michael G. Miller, Sampath Ratnam, John Zhang, Jie Zhou
  • Publication number: 20190073251
    Abstract: Apparatus having an array of memory cells include a controller configured to read a particular memory cell of a last written page of memory cells of a block of memory cells of the array of memory cells, determine whether a threshold voltage of the particular memory cell is less than a particular voltage level, and mark the last written page of memory cells as affected by power loss during a programming operation of the last written page of memory cells when the threshold voltage of the particular memory cell is determined to be higher than the particular voltage level.
    Type: Application
    Filed: November 2, 2018
    Publication date: March 7, 2019
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Michael G. Miller, Ashutosh Malshe, Violante Moschiano, Peter Feeley, Gary F. Besinga, Sampath K. Ratnam, Walter Di-Francesco, Renato C. Padilla, JR., Yun Li, Kishore Kumar Muchherla
  • Publication number: 20190065108
    Abstract: Devices and techniques for correcting for power loss in NAND memory devices are disclosed herein. The NAND memory devices may comprise a number of physical pages. For example, a memory controller may detect a power loss indicator at the NAND flash memory. The memory controller may identify a last-written physical page and determine whether the last-written physical page comprises more than a threshold number of low-read-margin cells. If the last-written physical page comprises more than the threshold number of low-read-margin cells, the memory controller may provide a programming voltage to at least the low-read-margin cells.
    Type: Application
    Filed: August 31, 2017
    Publication date: February 28, 2019
    Inventors: Michael G. Miller, Kishore Kumar Muchherla, Harish Singidi, Sampath Ratnam, Renan Padilla, Gary F. Besinga, Peter Sean Feeley
  • Publication number: 20190043592
    Abstract: Several embodiments of memory devices and systems with read level calibration are disclosed herein. In one embodiment, a memory device includes a controller operably coupled to a main memory having at least one memory region and calibration circuitry. The calibration circuitry is operably coupled to the at least one memory region and is configured to determine a read level offset value corresponding to a read level signal of the at least one memory region. In some embodiments, the calibration circuitry is configured to obtain the read level offset value internal to the main memory. The calibration circuitry is further configured to output the read level offset value to the controller.
    Type: Application
    Filed: September 10, 2018
    Publication date: February 7, 2019
    Inventors: Gary F. Besinga, Peng Fei, Michael G. Miller, Roland J. Awusie, Kishore Kumar Muchherla, Renato C. Padilla, Harish R. Singidi, Jung Sheng Hoei, Gianni S. Alsasua
  • Publication number: 20190043590
    Abstract: Several embodiments of memory devices and systems with read level calibration are disclosed herein. In one embodiment, a memory device includes a controller operably coupled to a main memory having at least one memory region and calibration circuitry. The calibration circuitry is operably coupled to the at least one memory region and is configured to determine a read level offset value corresponding to a read level signal of the at least one memory region. In some embodiments, the calibration circuitry is configured to obtain the read level offset value internal to the main memory. The calibration circuitry is further configured to output the read level offset value to the controller.
    Type: Application
    Filed: August 4, 2017
    Publication date: February 7, 2019
    Inventors: Gary F. Besinga, Peng Fei, Michael G. Miller, Roland J. Awusie, Kishore Kumar Muchherla, Renato C. Padilla, Harish R. Singidi, Jung Sheng Hoei, Gianni S. Alsasua
  • Patent number: 10199111
    Abstract: Several embodiments of memory devices and systems with read level calibration are disclosed herein. In one embodiment, a memory device includes a controller operably coupled to a main memory having at least one memory region and calibration circuitry. The calibration circuitry is operably coupled to the at least one memory region and is configured to determine a read level offset value corresponding to a read level signal of the at least one memory region. In some embodiments, the calibration circuitry is configured to obtain the read level offset value internal to the main memory. The calibration circuitry is further configured to output the read level offset value to the controller.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: February 5, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Gary F. Besinga, Peng Fei, Michael G. Miller, Roland J. Awusie, Kishore Kumar Muchherla, Renato C. Padilla, Harish R. Singidi, Jung Sheng Hoei, Gianni S. Alsasua
  • Publication number: 20180374549
    Abstract: A memory device comprising a main memory and a controller operably connected to the main memory is provided. The main memory can comprise a plurality of memory addresses, each corresponding to a single one of a plurality of word lines. Each memory address can be included in a tracked subset of the plurality of memory addresses. Each tracked subset can include memory addresses corresponding to more than one of the plurality of word lines. The controller is configured to track a number of read operations for each tracked subset, and to scan, in response to the number of read operations for a first tracked subset exceeding a first threshold value, a portion of data corresponding to each word line of the first tracked subset to determine an error count corresponding to each word line of the first tracked subset.
    Type: Application
    Filed: June 26, 2017
    Publication date: December 27, 2018
    Inventors: Renato C. Padilla, Jung Sheng Hoei, Michael G. Miller, Roland J. Awusie, Sampath K. Ratnam, Kishore Kumar Muchherla, Gary F. Besinga, Ashutosh Malshe, Harish R. Singidi
  • Patent number: 10121551
    Abstract: Devices and techniques for detecting power loss in NAND memory devices are disclosed herein. A memory controller may calibrate a first read level for a first physical page of a number of physical pages from an initial first read level position to a calibrated first read level position. The first read level may be between a first threshold voltage distribution corresponding to a first logical state of the at least four logical states and a second threshold voltage distribution corresponding to a second logical state of the at least four logical states. Also, the first threshold voltage distribution may be a highest threshold voltage distribution for the first physical page. The memory controller may calibrate a second read level for the first physical page that is lower than the first read level from an initial second read level position to a calibrated first read level position.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: November 6, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Michael G. Miller, Kishore Kumar Muchherla, Harish Singidi, Ting Luo, Ashutosh Malshe, Preston Thomson, Jianmin Huang
  • Publication number: 20180293003
    Abstract: The present disclosure includes memory blocks erasable in a single level cell mode. A number of embodiments include a memory comprising a plurality of mixed mode blocks and a controller. The controller may be configured to identify a particular mixed mode block for an erase operation and, responsive to a determined intent to subsequently write the particular mixed mode block in a single level cell (SLC) mode, perform the erase operation in the SLC mode.
    Type: Application
    Filed: April 7, 2017
    Publication date: October 11, 2018
    Inventors: Kishore K. Muchherla, Sampath K. Ratnam, Peter Feeley, Michael G. Miller, Preston A. Thomson, Renato C. Padilla, Ashutosh Malshe