Patents by Inventor Michael J. Kane

Michael J. Kane has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9968787
    Abstract: Implantable devices having motion sensors. In some examples the a configuration is generated for the implantable device to use the motion sensor in an energy preserving mode in which one or more axis of detection of the motion sensor is disabled or ignored. In some examples the motion sensor outputs along multiple axes are analyzed to determine which axes best correspond to certain patient parameters including patient motion/activity and/or cardiac contractility. In other examples the output of the motion sensor is observed across patient movements or postures to develop conversion parameters to determine a patient standard frame of reference relative to outputs of the motion sensor of an implanted device.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: May 15, 2018
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. Kane, William J. Linder, Ron A. Balczewski, Bin Mi, John D. Hatlestad, Paul Huelskamp, Keith R. Maile
  • Publication number: 20180126179
    Abstract: An implantable medical device (IMD) may be deployed within a patient's right atrium at a location near a right atrial appendage of the patient's heart in order to pace the patient's heart and/or to sense electrical activity within the patient's heart. In some cases, an IMD may be implanted within the right atrial appendage. The IMD may include an expandable anchoring mechanism configured to secure the IMD in place.
    Type: Application
    Filed: November 6, 2017
    Publication date: May 10, 2018
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Benjamin J. Haasl, Michael J. Kane, Arthur J. Foster, Lance Eric Juffer, Michael J. Johnson, Keith R. Maile, Brian L. Schmidt, Brendan Early Koop
  • Patent number: 9962550
    Abstract: Systems and methods for providing rate responsive pacing therapy to a heart of a patient. One example method for providing rate responsive pacing therapy includes sensing cardiac electrical data with a leadless cardiac pacemaker (LCP) that is implanted within or proximate the heart. From this location, the LCP may provide pacing therapy to the heart based at least in part on the sensed cardiac electrical data. An implantable medical device located remotely from the heart may sense patient activity, and may wirelessly communicate patient activity data from the implantable medical device to the LCP, sometimes using conducted communication. The LCP may be then determine an adjustment to the provided pacing therapy (e.g. adjust the pacing rate) based at least in part on the received patient activity data signal.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: May 8, 2018
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Michael J. Kane, Jeffrey E. Stahmann, Keith R. Maile
  • Publication number: 20180117339
    Abstract: Systems, devices, and methods for pacing a heart of a patient are disclosed. An illustrative method may include determining a motion level of the patient using a motion sensor of an implantable medical device secured relative to a patient's heart, and setting a pacing rate based at least in part on the patient's motion level. The patient's motion level may be determined by, for example, comparing the motion level sensed by the motion sensor during a current heart beat to a motion level associated with one or more previous heart beats. Noise may occur in the motion level measurements during those heart beats that transition between an intrinsically initiated heart beat and pace initiated heart beat. Various techniques may be applied to the motion level measurements to help reduce the effect of such noise.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 3, 2018
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Paul Huelskamp, Michael J. Kane, Lance Eric Juffer
  • Publication number: 20180117341
    Abstract: An implantable medical device (IMD) is configured with a pressure sensor. The IMD includes a housing, a pressure sensor and a fluid filled cavity. The housing has a diaphragm that is exposed to the environment outside of the housing. The pressure sensor has a pressure sensor diaphragm that is responsive to a pressure applied to the pressure sensor diaphragm and provides a pressure sensor output signal that is representative of the pressure applied to the pressure sensor diaphragm. The fluid filled cavity is in fluid communication with both the diaphragm of the housing and the pressure sensor diaphragm of the pressure sensor. The fluid filled cavity is configured to communicate a measure related to the pressure applied by the environment to the diaphragm of the housing to the pressure sensor diaphragm of the pressure sensor.
    Type: Application
    Filed: October 23, 2017
    Publication date: May 3, 2018
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Michael J. Kane, Benjamin J. Haasl, Keith R. Maile
  • Publication number: 20180117340
    Abstract: An implantable medical device (IMD) that includes a housing, a first electrode secured relative to the housing, a second electrode secured relative to the housing, and a gyroscope secured relative to the housing. The IMD may include circuitry in the housing in communication with the first electrode, the second electrode, and the gyroscope. The circuitry may be configured to determine and store a plurality of torsion data measurements, from which a representation of a twist profile may be determined.
    Type: Application
    Filed: October 23, 2017
    Publication date: May 3, 2018
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Bin Mi, Pramodsingh Hirasingh Thakur, Jeffrey E. Stahmann, Keith R. Maile, Qi An, Brendan Early Koop, Yinghong Yu, Viktoria A. Averina, Michael J. Kane, Krzysztof Z. Siejko
  • Publication number: 20180117304
    Abstract: A delivery and deployment device may include a handle assembly and a shaft extending distally from the handle assembly. A device containment housing may be coupled to a distal region of the shaft and may extend distally therefrom. The distal containment housing may be configured to accommodate at least a portion of the IMD therein. The IMD may, for example, be a leadless pacemaker, a lead, a neurostimulation device, a sensor or any other suitable IMD. A plurality of electrodes may be distributed about an exterior surface of the device containment housing such that at least some of the plurality of electrodes may be positioned to test a potential IMD deployment location before deploying the IMD.
    Type: Application
    Filed: October 25, 2017
    Publication date: May 3, 2018
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Brendan Early Koop, Yinghong Yu, Qi An, Keith R. Maile, Pramodsingh Hirasingh Thakur, Bin Mi, Jeffrey E. Stahmann, Viktoria A. Averina, Krzysztof Z. Siejko, Michael J. Kane, Allan Charles Shuros, Arjun D. Sharma, Brian Soltis
  • Publication number: 20180117338
    Abstract: Systems, devices, and methods for pacing a heart of a patient are disclosed. An illustrative method may include determining a motion level of the patient using a motion sensor of an implantable medical device secured relative to a patient's heart, and setting a pacing rate based at least in part on the patient's motion level. The patient's motion level may be determined by, for example, comparing the motion level sensed by the motion sensor during a current heart beat to a motion level associated with one or more previous heart beats. Noise may occur in the motion level measurements during those heart beats that transition between an intrinsically initiated heart beat and pace initiated heart beat. Various techniques may be applied to the motion level measurements to help reduce the effect of such noise.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 3, 2018
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Michael J. Kane, Paul Huelskamp
  • Patent number: 9956414
    Abstract: Methods and devices for configuring the use of a motion sensor in an implantable cardiac device. The electrical signals of the patient's heart are observed and may be correlated to the physical motion of the heart as detected by the motion sensor of the implantable cardiac device in order to facilitate temporal configuration of motion sensor data collection that avoids detecting cardiac motion in favor of overall motion of the patient.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: May 1, 2018
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Michael J. Kane, William J. Linder, Benjamin J. Haasl, Paul Huelskamp, Keith R. Maile, Ron A. Balczewski, Bin Mi, John D. Hatlestad, Allan Charles Shuros
  • Publication number: 20180093101
    Abstract: Systems and methods for communicating between medical devices. In one example, an implantable medical device comprising may comprise one or more electrodes and a controller coupled to the electrodes. The controller may be configured to receive a first communication pulse at a first communication pulse time and a second communication pulse at a second communication pulse time via the one or more electrodes. The controller may further be configured to identify one of three or more symbols based at least in part on the time difference between the first communication pulse time and the second communication pulse time.
    Type: Application
    Filed: October 4, 2017
    Publication date: April 5, 2018
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Keith R. Maile, Michael J. Kane, Paul Huelskamp, Lance Eric Juffer, Jeffrey E. Stahmann
  • Publication number: 20180092577
    Abstract: Systems and methods for determining an abnormal glycemic event using surrogates for glucose are disclosed herein. In an embodiment, a medical system includes a medical device associated with a subject and a processor communicatively coupled to the medical device. The medical device is configured to sense a signal corresponding to a presence of a compound in at least one of: an exhalation breath, interstitial fluid, blood and urine, wherein the compound is a surrogate for glucose. The processor is configured to receive the signal corresponding to the presence of the compound; determine the presence of the compound based on the received signal; and determine the subject is experiencing an abnormal glycemic event in response to the determined presence of the compound.
    Type: Application
    Filed: August 26, 2017
    Publication date: April 5, 2018
    Inventors: Michael J. Kane, Keith R. Maile
  • Publication number: 20180078779
    Abstract: A medical system for sensing and regulating cardiac activity of a patient may include a cardioverter that is configured to generate and deliver shocks to cardiac tissue and a leadless cardiac pacemaker (LCP) that is configured to sense cardiac activity and to communicate with the cardioverter. The cardioverter may be configured to detect a possible arrhythmia and, upon detecting the possible arrhythmia, may send a verification request to the LCP to help conform that the possible arrhythmia is occurring. The LCP, upon receiving the verification request from the cardioverter, may be configured to activate one or more of a plurality of sensors to attempt to help confirm that the possible arrhythmia is occurring.
    Type: Application
    Filed: September 20, 2017
    Publication date: March 22, 2018
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Qi An, Pramodsingh Hirasingh Thakur, Jeffrey E. Stahmann, Yinghong Yu, Michael J. Kane
  • Publication number: 20180078771
    Abstract: An implantable cardiac monitor (ICM) may be configured to be deployed subcutaneous, submuscular, or substernal at a position that enables the ICM to detect cardiac activity. In some cases, the ICM includes a housing that includes a body portion and a tail portion. A first electrode may be disposed adjacent a first end of the body portion, a second electrode may be disposed adjacent a second end of the body portion and a third electrode may be disposed adjacent a tail end of the tail portion. A controller may be disposed within the housing and may be operably coupled to the first electrode, the second electrode and the third electrode. The controller may be configured to select a pair of the first electrode, the second electrode and the third electrode to use for sensing cardiac electrical activity and to communicate information about the sensed activity to a second medical device.
    Type: Application
    Filed: September 20, 2017
    Publication date: March 22, 2018
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Brendan Early Koop, Lance Eric Juffer, Michael J. Kane, Benjamin J. Haasl, Keith R. Maile, Arthur J. Foster
  • Publication number: 20180055426
    Abstract: Systems and methods to determine presence of an analyte using an implantable medical device are disclosed. In an embodiment, a medical system includes an implantable medical device, a light source, an optical sensor and a processor. The implantable medical device includes an indicator tag, which is responsive to an analyte. The light source is configured to emit light onto the indicator tag, where the emitted light comprises at least one wavelength of light, and where the indicator tag emanates light, in response to the emitted light, that corresponds to whether the indicator tag is exposed the analyte. The optical sensor is configured to receive at least a portion of the emanated light, which includes at least one wavelength of light. And, the processor is configured to determine whether the indicator tag is exposed to the analyte based on the received light.
    Type: Application
    Filed: August 9, 2017
    Publication date: March 1, 2018
    Inventors: Michael J. Kane, Keith R. Maile, Jeffrey E. Stahmann
  • Publication number: 20180021582
    Abstract: A leadless cardiac pacemaker (LCP) is configured to sense cardiac activity and to pace a patient's heart and is disposable within a ventricle of the patient's heart. The LCP MAY include a housing, a first electrode and a second electrode that are secured relative to the housing and are spaced apart. A controller is disposed within the housing and is operably coupled to the first electrode and the second electrode such that the controller is capable of receiving, via the first electrode and the second electrode, electrical cardiac signals of the heart. The LCP may include a pressure sensor and/or an accelerometer. The controller may determine a pace time within a cardiac cycle based at least in part upon an indication of metabolic demand.
    Type: Application
    Filed: July 19, 2017
    Publication date: January 25, 2018
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Qi An, Michael J. Kane, Yinghong Yu, Jeffrey E. Stahmann, Pramodsingh Hirasingh Thakur, Keith R. Maile
  • Publication number: 20180020930
    Abstract: This document discusses, among other things, systems and methods to estimate an arterial diastolic pressure of a patient using ventricular pressure information of a heart of the patient and heart sound information of the heart of the patient, such as a timing of at least one of a first heart sound (S1) or a second heat sound (S2), in certain examples, adjusted by a respective correction factor.
    Type: Application
    Filed: July 20, 2017
    Publication date: January 25, 2018
    Inventors: Qi An, Pramodsingh Hirasingh Thakur, Michael J. Kane, Yinghong Yu, Jeffrey E. Stahmann
  • Publication number: 20180021570
    Abstract: An Implantable Medical Device (IMD) configured to be implantable in a ventricle of a patient's heart may include a housing, a first electrode secured relative to the housing, a second electrode secured relative to the housing, the second electrode spaced from the first electrode, and circuitry in the housing operatively coupled to the first electrode and the second electrode. The circuitry may be configured to identify a measure of impedance between the first electrode and the second electrode at each of a plurality of times during a cardiac cycle. Each measure of impedance may represent a measure of volume of the ventricle in which the IMD is implanted. In some cases, the circuitry may generate a pacing pulse, the timing of which is based at least in part on the measure of volume of the ventricle at two or more of the plurality of times during the cardiac cycle.
    Type: Application
    Filed: July 19, 2017
    Publication date: January 25, 2018
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Qi An, Jeffrey E. Stahmann, Yinghong Yu, Pramodsingh Hirasingh Thakur, Michael J. Kane, Keith R. Maile
  • Publication number: 20180021581
    Abstract: A leadless cardiac pacemaker (LCP) is configured to sense cardiac activity and to pace a patient's heart and is disposable within a ventricle of the patient's heart. The LCP may include a housing, a first electrode and a second electrode that are secured relative to the housing and are spaced apart. A controller is disposed within the housing and is operably coupled to the first electrode and the second electrode such that the controller is capable of receiving, via the first electrode and the second electrode, electrical cardiac signals of the heart. The LCP may include a pressure sensor and/or an accelerometer. The controller may determine an atrial contraction timing fiducial based at least in part upon two or more of a signal from the pressure sensor, a signal from the accelerometer representing, and an electrical cardiac signal.
    Type: Application
    Filed: June 16, 2017
    Publication date: January 25, 2018
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Qi An, Pramodsingh Hirasingh Thakur, Yinghong Yu, Michael J. Kane, Jeffrey E. Stahmann, Keith R. Maile
  • Publication number: 20180021567
    Abstract: A leadless cardiac pacemaker (LCP) is configured to sense cardiac activity and to pace a patient's heart and is disposable within a ventricle of the patient's heart. The LCP may include a housing, a first electrode and a second electrode that are secured relative to the housing and are spaced apart. A controller is disposed within the housing and is operably coupled to the first electrode and the second electrode such that the controller is capable of receiving, via the first electrode and the second electrode, electrical cardiac signals of the heart. The LCP may include a pressure sensor and/or an accelerometer. The controller may determine a pace time for a cardiac cycle based at least in part upon a signal from the pressure sensor.
    Type: Application
    Filed: July 11, 2017
    Publication date: January 25, 2018
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Qi An, Jeffrey E. Stahmann, Pramodsingh Hirasingh Thakur, Michael J. Kane, Yinghong Yu, Keith R. Maile
  • Publication number: 20180021585
    Abstract: A medical system includes two or more leadless implantable medical devices, each implanted in a different ventricle of the heart and each including a housing, a first electrode secured relative to the housing, a second electrode secured relative to the housing, and a pressure sensor secured relative to the housing. Each of the leadless implantable medical devices may further include circuitry in the housing operatively coupled to the corresponding first electrode, second electrode, and pressure sensor. The medical system may be configured to determine and store a plurality of pressure-pressure data pairs and/or impedance-impedance data pairs generated by the two or more leadless implantable medical devices, from which a representation of a pressure-pressure loop or volume-volume loop may be determined, to facilitate cardiac resynchronization therapy (CRT), patient health status monitoring, and/or the management of a non-CRT cardiac therapy.
    Type: Application
    Filed: July 19, 2017
    Publication date: January 25, 2018
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Qi An, Yinghong Yu, Michael J. Kane, Pramodsingh Hirasingh Thakur, Jeffrey E. Stahmann