Patents by Inventor Michael J. Pelletier
Michael J. Pelletier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250043961Abstract: A modular hydronic system core system and method includes a hydronic fluid flow conduit with closely spaced tees and distribution supply and return portions on a substrate. A supply manifold is coupled to branch feeders that support a circulator pump or zone valve. An ECM circulator along the conduit includes a Bluetooth transmitter to capture and transmit fluid flow rate and pressure. A return manifold includes branch returns with purge/shutoff valves. The branch feeders and returns are connectable to a distribution system having heating elements. Air and dirt separators, and an iron remover remove air, dirt and iron from the fluid. An expansion tank bracket supports a pressure gauge and expansion tank. A zone relay is coupled to the ECM circulator and zone valves on the branch feeders, and includes thermostat terminals. The zone relay captures inputs from the thermostats to control operation of the ECM circulator and zone valves.Type: ApplicationFiled: October 22, 2024Publication date: February 6, 2025Applicant: F.W. Webb CompanyInventors: Michael Weaver DelConte, Eric J. Duguay, Todd S. Hallock, Nicholas James Pelletier, Gregory Samuel Thompson, Patrick A. Reilly
-
Patent number: 7471831Abstract: The present invention relates to a system and method for performing rapid and programmable analysis of data. The present invention relates to a reconfigurable detector comprising at least one array of a plurality of pixels, where each of the plurality of pixels can be selected to receive and read-out an input. The pixel array is divided into at least one pixel group for conducting a common predefined analysis. Each of the pixels has a programmable circuitry programmed with a dynamically configurable user-defined function to modify the input. The present detector also comprises a summing circuit designed to sum the modified input.Type: GrantFiled: January 16, 2004Date of Patent: December 30, 2008Assignee: California Institute of TechnologyInventors: Greg Bearman, Michael J. Pelletier, Suresh Seshadri, Bedabrata Pain
-
Patent number: 6867858Abstract: A method of monitoring sample crystallization from a solution. The method includes the collection of multiple Raman spectra from a sample dissolved in a solvent as a function of time and under conditions promoting crystallization. Within each of the multiple Raman spectra, a first signal is identified corresponding to the sample associated with the solvent. A second signal corresponding to the sample in a microcrystallite state is also identified. Thereafter, the intensity of the multiple Raman spectra are measured for an increase relating to formation of the sample in a microcrystallite state. A method of monitoring sample crystallization from a solution as a function of turbidity is also disclosed. The method includes the collection of multiple Raman spectra from a sample dissolved in a solvent as a function of time under conditions promoting crystallization.Type: GrantFiled: February 18, 2003Date of Patent: March 15, 2005Assignee: Kaiser Optical SystemsInventors: Harry Owen, Mark Welch, Michael J. Pelletier
-
Publication number: 20040207731Abstract: The present invention relates to a system and method for performing rapid and programmable analysis of data. The present invention relates to a reconfigurable detector comprising at least one array of a plurality of pixels, where each of the plurality of pixels can be selected to receive and read-out an input. The pixel array is divided into at least one pixel group for conducting a common predefined analysis. Each of the pixels has a programmable circuitry programmed with a dynamically configurable user-defined function to modify the input. The present detector also comprises a summing circuit designed to sum the modified input.Type: ApplicationFiled: January 16, 2004Publication date: October 21, 2004Inventors: Greg Bearman, Michael J. Pelletier, Suresh Seshadri, Bedabrata Pain
-
Publication number: 20040004714Abstract: A method of monitoring sample crystallization from a solution. The method includes the collection of multiple Raman spectra from a sample dissolved in a solvent as a function of time and under conditions promoting crystallization. Within each of the multiple Raman spectra, a first signal is identified corresponding to the sample associated with the solvent. A second signal corresponding to the sample in a microcrystallite state is also identified. Thereafter, the intensity of the multiple Raman spectra are measured for an increase relating to formation of the sample in a microcrystallite state. A method of monitoring sample crystallization from a solution as a function of turbidity is also disclosed. The method includes the collection of multiple Raman spectra from a sample dissolved in a solvent as a function of time under conditions promoting crystallization.Type: ApplicationFiled: February 18, 2003Publication date: January 8, 2004Inventors: Harry Owen, Mark Welch, Michael J. Pelletier
-
Patent number: 6038363Abstract: A fiber-optic spectroscopic probe minimizes unwanted sources of luminescence through the use of one or more non-luminescing beam-redirecting elements operative to aperture share the optical collection path. Preferably, the beam-redirecting element is reflective, and may take the form of a spot mirror on an otherwise optically transparent window to fold at least a portion of the excitation radiation into the optical collection path or a mirror having a centralized aperture may be used to introduce the excitation radiation into the optical collection path. In either case, the excitation radiation may first pass through a dispersive element in a bandpass filter configuration. Several complete fiber-optic-based probe head designs are disclosed along with results indicating reduced luminescence, spurious fluorescence, in particular.Type: GrantFiled: August 26, 1997Date of Patent: March 14, 2000Assignee: Kaiser Optical SystemsInventors: Joseph B. Slater, Michael J. Pelletier
-
Patent number: 5986756Abstract: An optical probe assembly, which may be used with or without optical fibers for remote operation, incorporates a leak-detecting capability. A source such as a laser is used for optically exciting at least a portion of a sample substance, causing wavelengths characteristic of the sample to be emitted along a collection path for reception by spectral analysis means. The same laser or a different source is employed for optically exciting a point within a test region, causing wavelengths characteristic of any substances contained or entering into the test region to merge with those of the sample within the collection path.Type: GrantFiled: February 27, 1998Date of Patent: November 16, 1999Assignee: Kaiser Optical SystemsInventors: Joseph B. Slater, Michael J. Pelletier
-
Patent number: 5929986Abstract: Methods and apparatus for synchronous spectral line imaging are disclosed for use in conjunction with any of a number of radiative analysis techniques such as Raman or fluorescence detection. Light emitted points on a sample are separated into wavelength components and directed onto a two-dimensional image sensor such that the wavelength components impinge along one dimension of the sensor. The other dimension of the sensor is used in conjunction with spatial position relative to the sample, with at least certain of the steps being repeated for the different sample points so as to form the spectral line image. In terms of apparatus, the invention preferably utilizes at least one optical fiber having an input end to receive the light emitted by the sample and an output end to deliver the emitted light to the two-dimensional image sensor. The use of a flexible optical fiber facilitates the movement of the light received from the sample, movement of the received light relative to the sensor, or both.Type: GrantFiled: August 26, 1997Date of Patent: July 27, 1999Assignee: Kaiser Optical Systems, Inc.Inventors: Joseph B. Slater, Michael J. Pelletier
-
Patent number: 5862273Abstract: Laser band-pass filter and/or band-reject filters are located at the end of an optical measurement probe by placing an appropriate Bragg grating proximate to the tip, and within, one or both of the optical fibers that make up the probehead. Thus, where an optical fiber is used to carry excitation energy of a nominal wavelength to a sample, the distal tip of this fiber will have included therein an optical filter to selectively pass energy of the nominal wavelength. Similarly, where an optical fiber is employed to carry stimulated emission from the sample to an analytical instrument such as a spectrometer, this fiber will have included within it at its distal tip an optical filter to selectively reject energy associated with the nominal wavelength.Type: GrantFiled: February 21, 1997Date of Patent: January 19, 1999Assignee: Kaiser Optical Systems, Inc.Inventor: Michael J. Pelletier