Patents by Inventor Michael Joseph O'Brien

Michael Joseph O'Brien has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240239819
    Abstract: Described herein is a method of preparing an aminoalkyl-substituted disiloxane. The method includes forming a mixture including a di- or polyamine containing at least one primary amine group and a silane; reacting the mixture in a first reaction; adding a hydrolysis agent to the mixture; and reacting the mixture in a second reaction to form the aminoalkyl-substituted disiloxane. Also described herein is an aminoalkyl-substituted disiloxane prepared according to the method.
    Type: Application
    Filed: December 5, 2023
    Publication date: July 18, 2024
    Inventors: Bryce Martin Lipinski, Mark D. Doherty, Michael Joseph O'Brien, Matthew H. Littlejohn
  • Publication number: 20240082815
    Abstract: In some embodiments, the present disclosure relates to a system. The system includes a substrate and a fluid capture material formed on one or more surfaces of the substrate. The fluid capture material includes a sorbent material that binds one or more fluids, the one or more fluids comprising water, carbon dioxide, sulfur oxides, or a combination thereof. The fluid capture material also includes one or more binder materials, wherein the binder material is at least partially cross-linked.
    Type: Application
    Filed: September 14, 2022
    Publication date: March 14, 2024
    Inventors: Michael Joseph O'Brien, David Roger Moore, William Christopher Alberts, Jingjing Yang, Mark Daniel Doherty, Mark D. Buckley, Jack E. Howson, Bryce E. Lipinski
  • Patent number: 11578002
    Abstract: Ceramic slurries may include ceramic particles, a photoreactive-photostable hybrid binder, and a photoinitiator. The photoreactive-photostable hybrid binder may include a photoreactive organic resin component, a photoreactive siloxane component, and one or more photostable siloxane components. Methods of forming a ceramic part may include curing a portion of a ceramic slurry by exposing the portion of the ceramic slurry to light to form a green ceramic part, and partially firing the green ceramic part to form a brown ceramic part. The brown ceramic part may be sintered at or above a sintering temperature of the ceramic particles to form a ceramic part, wherein sintering includes heating the brown ceramic part to a sufficient temperature to promote reaction bonding that converts silica from the photoreactive-photostable hybrid binder into silicates that bond with the ceramic particles.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: February 14, 2023
    Assignee: General Electric Company
    Inventors: Michael Joseph O'Brien, Cathleen Ann Hoel
  • Patent number: 11572313
    Abstract: Ceramic slurries may include ceramic particles, a photoreactive-photostable hybrid binder, and a photoinitiator. The photoreactive-photostable hybrid binder may include a photoreactive organic resin component, a photoreactive siloxane component, and one or more photostable siloxane components. Methods of forming a ceramic part may include curing a portion of a ceramic slurry by exposing the portion of the ceramic slurry to light to form a green ceramic part, and partially firing the green ceramic part to form a brown ceramic part. The brown ceramic part may be sintered at or above a sintering temperature of the ceramic particles to form a ceramic part, wherein sintering includes heating the brown ceramic part to a sufficient temperature to promote reaction bonding that converts silica from the photoreactive-photostable hybrid binder into silicates that bond with the ceramic particles.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: February 7, 2023
    Assignee: General Electric Company
    Inventors: Michael Joseph O'Brien, Cathleen Ann Hoel
  • Patent number: 11391717
    Abstract: The present disclosure is directed to a method of altering chemical properties of an in-process resin used with a 3D printing apparatus. The method includes monitoring the in-process resin using an imaging spectrometer, comparing the in-process resin and a model using one or more spectrums from the imaging spectrometer, and diluting the in-process resin with a diluting resin.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: July 19, 2022
    Assignee: General Electric Company
    Inventors: Stephanie Lynn DePalma, Michael Joseph O'Brien, Brittany Nicole Potter
  • Patent number: 11390563
    Abstract: A ceramic slurry for forming a ceramic article includes a binder, a first plurality of ceramic particles having a first morphology, a second plurality of ceramic particles having a second morphology that is different from the first morphology; and a photoinitiator. A method for using this slurry for fabricating ceramic articles is presented as well.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: July 19, 2022
    Assignee: General Electric Company
    Inventors: Cathleen Ann Hoel, Xi Yang, Michael Joseph O'Brien
  • Publication number: 20220032585
    Abstract: A method of making a component of an electric machine using an additive manufacturing process is disclosed. The method includes forming a first lamina of a conductive material, building a first layer of a second material on a first surface of the first lamina, treating the second material on the first surface of the first lamina to define a first insulative layer, and building on the first insulative layer a second lamina of a conductive material. The steps can be repeated iteratively until a desired thickness or number of layers is reached.
    Type: Application
    Filed: July 28, 2020
    Publication date: February 3, 2022
    Inventors: Lili Zhang, Michael Joseph O'Brien, Cathleen Ann Hoel, Min Zou, Raghavendra Adharapurapu
  • Publication number: 20210269362
    Abstract: Ceramic slurries may include ceramic particles, a photoreactive-photostable hybrid binder, and a photoinitiator. The photoreactive-photostable hybrid binder may include a photoreactive organic resin component, a photoreactive siloxane component, and one or more photostable siloxane components. Methods of forming a ceramic part may include curing a portion of a ceramic slurry by exposing the portion of the ceramic slurry to light to form a green ceramic part, and partially firing the green ceramic part to form a brown ceramic part. The brown ceramic part may be sintered at or above a sintering temperature of the ceramic particles to form a ceramic part, wherein sintering includes heating the brown ceramic part to a sufficient temperature to promote reaction bonding that converts silica from the photoreactive-photostable hybrid binder into silicates that bond with the ceramic particles.
    Type: Application
    Filed: February 27, 2020
    Publication date: September 2, 2021
    Inventors: Michael Joseph O'Brien, Cathleen Ann Hoel
  • Publication number: 20210269361
    Abstract: Ceramic slurries may include ceramic particles, a photoreactive-photostable hybrid binder, and a photoinitiator. The photoreactive-photostable hybrid binder may include a photoreactive organic resin component, a photoreactive siloxane component, and one or more photostable siloxane components. Methods of forming a ceramic part may include curing a portion of a ceramic slurry by exposing the portion of the ceramic slurry to light to form a green ceramic part, and partially firing the green ceramic part to form a brown ceramic part. The brown ceramic part may be sintered at or above a sintering temperature of the ceramic particles to form a ceramic part, wherein sintering includes heating the brown ceramic part to a sufficient temperature to promote reaction bonding that converts silica from the photoreactive-photostable hybrid binder into silicates that bond with the ceramic particles.
    Type: Application
    Filed: February 27, 2020
    Publication date: September 2, 2021
    Inventors: Michael Joseph O'Brien, Cathleen Ann Hoel
  • Publication number: 20200115284
    Abstract: A ceramic slurry for forming a ceramic article includes a binder, a first plurality of ceramic particles having a first morphology, a second plurality of ceramic particles having a second morphology that is different from the first morphology; and a photoinitiator. A method for using this slurry for fabricating ceramic articles is presented as well.
    Type: Application
    Filed: December 12, 2019
    Publication date: April 16, 2020
    Inventors: Cathleen Ann Hoel, Xi Yang, Michael Joseph O'Brien
  • Patent number: 10538460
    Abstract: A ceramic slurry for forming a ceramic article includes a binder, a first plurality of ceramic particles having a first morphology, a second plurality of ceramic particles having a second morphology that is different from the first morphology; and a photoinitiator. A method for using this slurry for fabricating ceramic articles is presented as well.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: January 21, 2020
    Assignee: General Electric Company
    Inventors: Cathleen Ann Hoel, Xi Yang, Michael Joseph O'Brien
  • Publication number: 20190339249
    Abstract: The present disclosure is directed to a method of altering chemical properties of an in-process resin used with a 3D printing apparatus. The method includes monitoring the in-process resin using an imaging spectrometer, comparing the in-process resin and a model using one or more spectrums from the imaging spectrometer, and diluting the in-process resin with a diluting resin.
    Type: Application
    Filed: July 16, 2019
    Publication date: November 7, 2019
    Inventors: Stephanie Lynn DePalma, Michael Joseph O'Brien, Brittany Nicole Potter
  • Publication number: 20190284096
    Abstract: A ceramic slurry for forming a ceramic article includes a binder, a first plurality of ceramic particles having a first morphology, a second plurality of ceramic particles having a second morphology that is different from the first morphology; and a photoinitiator. A method for using this slurry for fabricating ceramic articles is presented as well.
    Type: Application
    Filed: March 15, 2018
    Publication date: September 19, 2019
    Inventors: Cathleen Ann Hoel, Xi Yang, Michael Joseph O'Brien
  • Patent number: 10408812
    Abstract: The present disclosure is directed to a method of altering chemical properties of an in-process resin used with a 3D printing apparatus. The method includes monitoring the in-process resin using an imaging spectrometer, comparing the in-process resin and a model using one or more spectrums from the imaging spectrometer, and diluting the in-process resin with a diluting resin.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: September 10, 2019
    Assignee: General Electric Company
    Inventors: Stephanie Lynn DePalma, Michael Joseph O'Brien, Brittany Nicole Potter
  • Patent number: 10030483
    Abstract: An efficient and cost-effective process of carbon dioxide recycling in enhanced oil recovery wells or in fracturing wells is provided. The process comprises recovering a hydrocarbon enriched stream of condensed carbon dioxide from and enhanced oil recovery (EOR) well or a fracturing well; adding to said stream one or more thickeners; and directing the thickened stream to the EOR well or fracturing well for recycled usage in EOR.
    Type: Grant
    Filed: October 26, 2015
    Date of Patent: July 24, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Dan Hancu, Michael Joseph O'Brien, Robert James Perry, Stanlee Teresa Buddle, Mark Daniel Doherty
  • Patent number: 10023500
    Abstract: The subject matter disclosed herein relates generally to light-curable ceramic slurries, and more specifically, to hybrid binders for light-curable ceramic slurries. A light-curable ceramic slurry includes a hybrid binder having an organic resin component and a multi-functional reactive siloxane component that is miscible with the organic resin component. The slurry also includes a photoinitiator having a corresponding photoactivation wavelength range and ceramic particles. The slurry is cured via exposure to light in the photoactivation wavelength range of the photoinitiator such that both the organic resin component and the multi-functional reactive siloxane component of the hybrid binder polymerize.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: July 17, 2018
    Assignee: General Electric Company
    Inventors: Michael Joseph O'Brien, Cathleen Ann Hoel
  • Patent number: 9957438
    Abstract: A compound represented by the following formula is provided: Also provided is a solution including a compound disclosed herein, a volume of dense carbon dioxide (CO2), and a co-solvent, where the solution has an increased viscosity greater than the viscosity of dense CO2. Methods of increasing the viscosity of dense CO2 and natural gas liquids (NGLs) by, for example, dissolving a compound disclosed herein to form a solution, are also provided.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: May 1, 2018
    Assignee: General Electric Company
    Inventors: Mark Daniel Doherty, Michael Joseph O'Brien, Jason Lee, Robert James Perry, Robert Enick
  • Patent number: 9956520
    Abstract: A carbon dioxide absorbent composition is described, including (i) a liquid, nonaqueous silicon-based material, functionalized with one or more groups that either reversibly react with CO2 or have a high-affinity for CO2, and (ii) a hydroxy-containing solvent that is capable of dissolving both the silicon-based material and a reaction product of the silicon-based material and CO2. The absorbent may be utilized in methods to reduce carbon dioxide in an exhaust gas, and finds particular utility in power plants.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: May 1, 2018
    Assignee: General Electric Company
    Inventors: Robert James Perry, Grigorii Lev Soloveichik, Malgorzata Iwona Rubinsztajn, Michael Joseph O'Brien, Larry Neil Lewis, Tunchiao Hubert Lam, Sergei Kniajanski, Dan Hancu
  • Publication number: 20180100847
    Abstract: The present disclosure is directed to a method of altering chemical properties of an in-process resin used with a 3D printing apparatus. The method includes monitoring the in-process resin using an imaging spectrometer, comparing the in-process resin and a model using one or more spectrums from the imaging spectrometer, and diluting the in-process resin with a diluting resin.
    Type: Application
    Filed: October 12, 2016
    Publication date: April 12, 2018
    Inventors: Stephanie Lynn DePalma, Michael Joseph O'Brien, Brittany Nicole Potter
  • Patent number: 9919263
    Abstract: An amino-siloxane composition is presented. The amino-siloxane composition includes structure (I): wherein R1 is independently at each occurrence a C1-C5 aliphatic radical; R2 is a C3-C4 aliphatic radical; R3 is a C1-C5 aliphatic radical or R4, wherein R4 comprises structure (II): and X is an electron donating group. Methods of reducing an amount of carbon dioxide in a process stream using the amino-siloxane composition are also presented.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: March 20, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Michael Joseph O'Brien, Rachel Lizabeth Farnum, Robert James Perry