Patents by Inventor Michael Shur

Michael Shur has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220165909
    Abstract: An improved heterostructure for an optoelectronic device is provided. The heterostructure includes an active region, an electron blocking layer, and a p-type contact layer. The heterostructure can include a p-type interlayer located between the electron blocking layer and the p-type contact layer. In an embodiment, the electron blocking layer can have a region of graded transition. The p-type interlayer can also include a region of graded transition.
    Type: Application
    Filed: February 9, 2022
    Publication date: May 26, 2022
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Rakesh Jain, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur
  • Publication number: 20220159912
    Abstract: An approach for controlling light exposure of a light sensitive object is described. Aspects of this approach involve using a first set of radiation sources to irradiate the object with visible radiation and infrared radiation. A second set of radiation sources spot irradiate the object in a set of locations with a target ultraviolet radiation having a range of wavelengths. Radiation sensors detect radiation reflected from the object and environment condition sensors detect conditions of the environment in which the object is located during irradiation. A controller controls irradiation of the light sensitive object by the first and second set of radiation sources according to predetermined optimal irradiation settings specified for various environmental conditions. In addition, the controller adjusts irradiation settings of the first and second set of radiation sources as a function of measurements obtained by the various sensors.
    Type: Application
    Filed: February 11, 2022
    Publication date: May 26, 2022
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Alexander Dobrinsky, Maxim S. Shatalov, Arthur Peter Barber, III
  • Publication number: 20220165910
    Abstract: An improved heterostructure for an optoelectronic device is provided. The heterostructure includes an active region, an electron blocking layer, and a p-type contact layer. The heterostructure can include a p-type interlayer located between the electron blocking layer and the p-type contact layer. In an embodiment, the electron blocking layer can have a region of graded transition. The p-type interlayer can also include a region of graded transition.
    Type: Application
    Filed: February 9, 2022
    Publication date: May 26, 2022
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Rakesh Jain, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur
  • Patent number: 11329196
    Abstract: A mounting structure for mounting a set of optoelectronic devices is provided. A mounting structure for a set of optoelectronic devices can include: a body formed of an insulating material; and a heatsink element embedded within the body. A heatsink can be located adjacent to the mounting structure. The set of optoelectronic devices can be mounted on a side of the mounting structure opposite of the heatsink.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: May 10, 2022
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Grigory Simin, Alexander Dobrinsky
  • Publication number: 20220061228
    Abstract: A solution for controlling mildew in a cultivated area is described. The solution can include a set of ultraviolet sources that are configured to emit ultraviolet and/or blue-ultraviolet radiation to harm mildew present on a plant or ground surface. A set of sensors can be utilized to acquire plant data for at least one plant surface of a plant, which can be processed to determine a presence of mildew on the at least one plant surface. Additional features can be included to further affect the growth environment for the plant. A feedback process can be implemented to improve one or more aspects of the growth environment.
    Type: Application
    Filed: November 9, 2021
    Publication date: March 3, 2022
    Applicant: Sensor Electronic Technology, Inc.,
    Inventors: Arthur Peter Barber, III, Alexander Dobrinsky, Maxim S. Shatalov, Michael Shur
  • Patent number: 11246266
    Abstract: An approach for controlling light exposure of a light sensitive object is described. Aspects of this approach involve using a first set of radiation sources to irradiate the object with visible radiation and infrared radiation. A second set of radiation sources spot irradiate the object in a set of locations with a target ultraviolet radiation having a range of wavelengths. Radiation sensors detect radiation reflected from the object and environment condition sensors detect conditions of the environment in which the object is located during irradiation. A controller controls irradiation of the light sensitive object by the first and second set of radiation sources according to predetermined optimal irradiation settings specified for various environmental conditions. In addition, the controller adjusts irradiation settings of the first and second set of radiation sources as a function of measurements obtained by the various sensors.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: February 15, 2022
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Alexander Dobrinsky, Maxim S. Shatalov, Arthur Peter Barber, III
  • Publication number: 20220026607
    Abstract: A diffusive layer including a laminate of a plurality of transparent films is provided. At least one of the plurality of transparent films includes a plurality of diffusive elements with a concentration that is less than a percolation threshold. The plurality of diffusive elements are optical elements that diffuse light that is impinging on such element. The plurality of diffusive elements can be diffusively reflective, diffusively transmitting or combination of both. The plurality of diffusive elements can include fibers, grains, domains, and/or the like. The at least one film can also include a powder material for improving the diffusive emission of radiation and a plurality of particles that are fluorescent when exposed to radiation.
    Type: Application
    Filed: October 11, 2021
    Publication date: January 27, 2022
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Alexander Dobrinsky, Michael Shur
  • Publication number: 20220011363
    Abstract: Various embodiments are described that relate to failure determination for an integrated circuit. An integrated circuit can be tested to determine if the integrated circuit is functioning properly. The integrated circuit can be subjected to a specific radiation such that the integrated circuit produces a response. This response can be compared against an expected response to determine if the response matches the expected response. If the response does not match the expected response, then the integrated circuit fails the test. If the response matches the expected response, then the integrated circuit passes the test.
    Type: Application
    Filed: December 15, 2020
    Publication date: January 13, 2022
    Inventors: Greg Rupper, John Suarez, Sergey Rudin, Meredith Reed, Michael Shur
  • Patent number: 11166415
    Abstract: A solution for controlling mildew in a cultivated area is described. The solution can include a set of ultraviolet sources that are configured to emit ultraviolet and/or blue-ultraviolet radiation to harm mildew present on a plant or ground surface. A set of sensors can be utilized to acquire plant data for at least one plant surface of a plant, which can be processed to determine a presence of mildew on the at least one plant surface. Additional features can be included to further affect the growth environment for the plant. A feedback process can be implemented to improve one or more aspects of the growth environment.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: November 9, 2021
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Arthur Peter Barber, III, Alexander Dobrinsky, Maxim S. Shatalov, Michael Shur
  • Publication number: 20210338091
    Abstract: Approaches for evaluating fluid flow based on fluorescent sensing is disclosed. In one approach, a nanoparticle injector is configured to inject nanoparticles into fluid flowing through a conduit. A detector is configured to determine a presence of the nanoparticles in the flow of the fluid. The detector can include a radiation source configured to irradiate the fluid with a target radiation and a fluorescent meter configured to measure an amount of fluorescence emitted from the fluid irradiated with the radiation. A control unit is configured to determine the flow of the fluid in the conduit as a function of the measured amount of fluorescence.
    Type: Application
    Filed: July 12, 2021
    Publication date: November 4, 2021
    Inventors: Alexander Dobrinsky, Michael Shur
  • Patent number: 11143799
    Abstract: A diffusive layer including a laminate of a plurality of transparent films is provided. At least one of the plurality of transparent films includes a plurality of diffusive elements with a concentration that is less than a percolation threshold. The plurality of diffusive elements are optical elements that diffuse light that is impinging on such element. The plurality of diffusive elements can be diffusively reflective, diffusively transmitting or combination of both. The plurality of diffusive elements can include fibers, grains, domains, and/or the like. The at least one film can also include a powder material for improving the diffusive emission of radiation and a plurality of particles that are fluorescent when exposed to radiation.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: October 12, 2021
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Alexander Dobrinsky, Michael Shur
  • Patent number: 11058312
    Abstract: Approaches for evaluating fluid flow based on fluorescent sensing is disclosed. In one approach, a nanoparticle injector is configured to inject nanoparticles into fluid flowing through a conduit. A detector is configured to determine a presence of the nanoparticles in the flow of the fluid. The detector can include a radiation source configured to irradiate the fluid with a target radiation and a fluorescent meter configured to measure an amount of fluorescence emitted from the fluid irradiated with the radiation. A control unit is configured to determine the flow of the fluid in the conduit as a function of the measured amount of fluorescence.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: July 13, 2021
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Alexander Dobrinsky, Michael Shur
  • Publication number: 20210202791
    Abstract: A heterostructure, such as a group III nitride heterostructure, for use in an optoelectronic device is described. The heterostructure can include a sacrificial layer, which is located on a substrate structure. The sacrificial layer can be at least partially decomposed using a laser. The substrate structure can be completely removed from the heterostructure or remain attached thereto. One or more additional solutions for detaching the substrate structure from the heterostructure can be utilized. The heterostructure can undergo additional processing to form the optoelectronic device.
    Type: Application
    Filed: March 11, 2021
    Publication date: July 1, 2021
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Mikhail Gaevski, Alexander Dobrinsky, Maxim S. Shatalov, Michael Shur
  • Publication number: 20210105881
    Abstract: An approach for controlling ultraviolet intensity over a surface of a light sensitive object is described. Aspects involve using ultraviolet radiation with a wavelength range that includes ultraviolet-A and ultraviolet-B radiation to irradiate the surface. Light sensors measure light intensity at the surface, wherein each sensor measures light intensity in a wavelength range that corresponds to a wavelength range emitted from at least one of the sources. A controller controls the light intensity over the surface by adjusting the power of the sources as a function of the light intensity measurements. The controller uses the light intensity measurements to determine whether each source is illuminating the surface with an intensity that is within an acceptable variation with a predetermined intensity value targeted for the surface. The controller adjusts the power of the sources as a function of the variation to ensure an optimal distribution of light intensity over the surface.
    Type: Application
    Filed: December 16, 2020
    Publication date: April 8, 2021
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Arthur Peter Barber, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur, Robert M. Kennedy
  • Patent number: 10964862
    Abstract: A semiconductor heterostructure for an optoelectronic device includes a base semiconductor layer having one or more semiconductor heterostructure mesas located thereon. One or more of the mesas can include a set of active regions having multiple main peaks of radiative recombination at differing wavelengths. For example, a mesa can include two or more active regions, each of which has a different wavelength for the corresponding main peak of radiative recombination. The active regions can be configured to be operated simultaneously or can be capable of independent operation. A system can include one or more optoelectronic devices, each of which can be operated as an emitter or a detector.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: March 30, 2021
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Alexander Dobrinsky
  • Publication number: 20210076573
    Abstract: A solution for illuminating plants is provided. An illustrative system can include: a set of visible light sources configured to emit visible radiation directed at the plant; a set of ultraviolet radiation sources configured to emit ultraviolet radiation directed at the plant; and a set of sensors, wherein at least one sensor is configured to detect a fluorescence emitted from the plant due to the ultraviolet radiation and a fluorescence emitted from the plant due to the visible radiation.
    Type: Application
    Filed: November 30, 2020
    Publication date: March 18, 2021
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Alexander Dobrinsky, Michael Shur
  • Patent number: 10950747
    Abstract: A heterostructure, such as a group III nitride heterostructure, for use in an optoelectronic device is described. The heterostructure can include a sacrificial layer, which is located on a substrate structure. The sacrificial layer can be at least partially decomposed using a laser. The substrate structure can be completely removed from the heterostructure or remain attached thereto. One or more additional solutions for detaching the substrate structure from the heterostructure can be utilized. The heterostructure can undergo additional processing to form the optoelectronic device.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: March 16, 2021
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Mikhail Gaevski, Alexander Dobrinsky, Maxim S. Shatalov, Michael Shur
  • Publication number: 20210068351
    Abstract: An approach for controlling light exposure of a light sensitive object is described. Aspects of this approach involve using a first set of radiation sources to irradiate the object with visible radiation and infrared radiation. A second set of radiation sources spot irradiate the object in a set of locations with a target ultraviolet radiation having a range of wavelengths. Radiation sensors detect radiation reflected from the object and environment condition sensors detect conditions of the environment in which the object is located during irradiation. A controller controls irradiation of the light sensitive object by the first and second set of radiation sources according to predetermined optimal irradiation settings specified for various environmental conditions. In addition, the controller adjusts irradiation settings of the first and second set of radiation sources as a function of measurements obtained by the various sensors.
    Type: Application
    Filed: November 23, 2020
    Publication date: March 11, 2021
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Alexander Dobrinsky, Maxim S. Shatalov, Arthur Peter Barber, III
  • Publication number: 20210057534
    Abstract: Semiconductor devices having conductive floating gates superimposed on and/or embedded within a conducting channel for managing electromagnetic radiation in the device. The conductive floating gates can comprise a one- or two-dimensional array of asymmetric structures superimposed on and/or embedded within the conducting channel. The conductive floating gates can comprise Nb2N, Ta2N, TaNx, NbNx, WNx, or MoNx or any transition metal nitride compound. The device can include a plurality of conductive floating gates on a rear surface of a barrier layer, wherein each of the conductive floating gates might be separately biased for individual tuning. Antennas for capturing or emitting THz or sub-THz radiation could be attached to the device contacts. Terahertz or infrared radiation could be manipulated by driving a current through the conducting channel into a plasmonic boom regime. Additional manipulation of the electromagnetic radiation could be achieved by having antennas with an appropriate phase angle shift.
    Type: Application
    Filed: July 14, 2020
    Publication date: February 25, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Michael Shur, David J. Meyer
  • Patent number: RE48943
    Abstract: Heterostructures for use in optoelectronic devices are described. One or more parameters of the heterostructure can be configured to improve the reliability of the corresponding optoelectronic device. The materials used to create the active structure of the device can be considered in configuring various parameters the n-type and/or p-type sides of the heterostructure.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: February 22, 2022
    Assignee: SENSOR ELECTRONIC TECHNOLOGY, INC.
    Inventors: Rakesh Jain, Maxim S. Shatalov, Jinwei Yang, Alexander Dobrinsky, Michael Shur, Remigijus Gaska