Patents by Inventor Michael Totzeck

Michael Totzeck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090073398
    Abstract: The disclosure relates to a microlithographic projection exposure apparatus and a microlithographic projection exposure apparatus, as well as related components, methods and articles made by the methods. The microlithographic projection exposure apparatus includes an illumination system and a projection objective. The illumination system can illuminate a mask arranged in an object plane of the projection objective. The mask can have structures which are to be imaged. The method can include illuminating a pupil plane of the illumination system with light. The method can also include modifying, in a plane of the projection objective, the phase, amplitude and/or polarization of the light passing through that plane. The modification can be effected for at least two diffraction orders in mutually different ways. A mask-induced loss in image contrast obtained in the imaging of the structures can be reduced compared to a method without the modification.
    Type: Application
    Filed: September 15, 2008
    Publication date: March 19, 2009
    Applicant: Carl Zeiss SMT AG
    Inventors: Michael Totzeck, Aksel Goehnermeier, Wolfgang Singer, Helmut Beierl, Heiko Feldmann, Hans-Juergen Mann, Jochen Hetzler
  • Publication number: 20090040496
    Abstract: In an exposure method for exposing a substrate which is arranged in the area of an image plane of a projection objective as well as in a projection exposure system for performing that method, output radiation directed at the substrate and having an output polarization state is produced. Through variable adjustment of the output polarization state with the aid of at least one polarization manipulation device, the output polarization state can be formed to approach a nominal output polarization state. The polarization manipulation can be performed in a control loop on the basis of polarization-optical measuring data.
    Type: Application
    Filed: July 22, 2008
    Publication date: February 12, 2009
    Applicant: Carl Zeiss
    Inventors: Toralf GRUNER, Daniel Kraehmer, Michael Totzeck, Johannes Wangler, Markus Brotsack, Nils Dieckmann, Aksel Goehnermeier, Markus Schwab, Damian Fiolka, Markus Zenzinger
  • Publication number: 20090021830
    Abstract: In some embodiments, the disclosure provides a projection lens configured to configured to image radiation from an object plane of the projection lens to an image plane of the projection lens. The projection lens can, for example, be used in a microlithographic projection exposure apparatus. The projection lens includes a last lens on the image plane side. The last lens includes at least one intrinsically birefringent material. The material can be, for example, magnesium oxide, a garnet, lithium barium fluoride and/or a spinel. The last lens can have a thickness d which satisfies the condition 0.8*y0, max<d<1.5*y0, max, where y0, max denotes the maximum distance of an object field point from the optical axis.
    Type: Application
    Filed: June 4, 2008
    Publication date: January 22, 2009
    Applicant: Carl Zeiss SMT AG
    Inventors: Michael Totzeck, Susanne Beder, Wilfried Clauss, Heiko Feldmann, Daniel Kraehmer, Aurelian Dodoc
  • Publication number: 20090021719
    Abstract: The disclosure relates to a microlithographic projection exposure apparatus, as well as related components and methods. In some embodiments, a microlithographic projection exposure apparatus includes an illumination system and a projection objective, where the illumination system can illuminate an object plane of the projection objective and the projection objective can produce the image of the object plane on an image plane. A polarization-dependent transmission can be produced in the illumination system such that, for at least one polarization distribution in respect of the light impinging on the object plane, a non-homogeneous intensity distribution in the object plane is obtained. The non-homogeneous intensity distribution can afford a homogeneous intensity distribution in the image plane by virtue of polarization-dependent transmission properties of the projection objective.
    Type: Application
    Filed: June 25, 2008
    Publication date: January 22, 2009
    Applicant: CARL ZEISS SMT AG
    Inventors: Damian Fiolka, Michael Totzeck, Alexandra Pazidis, Michael Ricker
  • Patent number: 7474469
    Abstract: The invention relates to an arrangement of optical elements in a microlithographic projection exposure apparatus, particularly in a projection objective of a microlithographic projection exposure apparatus. The arrangement comprises a rigid first optical element, a rigid second optical element with a first optical surface and a second optical surface on opposite sides and a first liquid. The first optical element has a concave optical surface. The first side of the second optical element is facing the concave optical surface of the first optical element. The first liquid is at least partially filling the space between the first optical element and the second optical element.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: January 6, 2009
    Assignee: Carl Zeiss SMT AG
    Inventors: Michael Totzeck, Gerhart Fuerter, Olaf Dittmann, Karl-Heinz Schuster, David Shafer, Susanne Beder, Wolfgang Singer
  • Publication number: 20080304037
    Abstract: A lithographic apparatus includes a support structure configured to hold a patterning device, the patterning device configured to pattern a beam of radiation according to a desired pattern, a substrate table configured to hold a substrate and a projection system configured to project the beam as patterned onto a target portion of the substrate. The lithographic apparatus further includes a polarization modifier disposed in a path of the beam. The polarization modifier comprises a material having a linear polarization.
    Type: Application
    Filed: August 15, 2008
    Publication date: December 11, 2008
    Applicant: ASML Netherlands B.V.
    Inventors: Michael TOTZECK, Bernd Peter Geh, Skip Miller
  • Patent number: 7463422
    Abstract: A method of determining materials of lenses contained in an optical system of a projection exposure apparatus is described. First, for each lens of a plurality of the lenses, a susceptibility factor KLT/LH is determined. This factor is a measure of the susceptibility of the respective lens to deteriorations caused by at least one of lifetime effects and lens heating effects. Then a birefringent fluoride crystal is selected as a material for each lens for which the susceptibility factor KLT/LH is above a predetermined threshold. Theses lenses are assigned to a first set of lenses. For these lenses, measures are determined for reducing adverse effects caused by birefringence inherent to the fluoride crystals.
    Type: Grant
    Filed: January 25, 2007
    Date of Patent: December 9, 2008
    Assignee: Carl Zeiss SMT AG
    Inventors: Vladimir Kamenow, Daniel Kraehmer, Michael Totzeck, Toralf Gruner, Aurelian Dodoc, David Shafer, Wilhelm Ulrich, Rudolf von Buenau, Hans-Juergen Mann, Alexander Epple
  • Patent number: 7423727
    Abstract: A lithographic apparatus includes a support structure configured to hold a patterning device, the patterning device configured to pattern a beam of radiation according to a desired pattern, a substrate table configured to hold a substrate and a projection system configured to project the beam as patterned onto a target portion of the substrate. The lithographic apparatus further includes a polarization modifier disposed in a path of the beam. The polarization modifier comprises a material having a radially varying birefringence.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: September 9, 2008
    Assignee: ASML Netherlands B.V.
    Inventors: Michael Totzeck, Bernd Peter Geh, Skip Miller
  • Publication number: 20080212060
    Abstract: A method for determining intensity distribution in the focal plane of a projection exposure arrangement, in which a large aperture imaging system is emulated and a light from a sample is represented on a local resolution detector by an emulation imaging system. A device for carrying out the method and emulated devices are also described. The invention makes it possible to improve a reproduction quality since the system apodisation is taken into consideration. The inventive method consists in includes determining the integrated amplitude distribution in an output pupil, combining the integrated amplitude distribution with a predetermined apodization correction and calculating a corrected apodization image according to the modified amplitude distribution.
    Type: Application
    Filed: September 2, 2006
    Publication date: September 4, 2008
    Applicant: CARL ZEISS SMS GMBH
    Inventors: Joern Greif-Wuestenbecker, Beate Boehme, Ulrich Stroessner, Michael Totzeck, Vladimir Kamenov, Olaf Dittmann, Daniel Kraehmer, Toralf Gruner, Bernd Geh
  • Publication number: 20080204877
    Abstract: In some embodiments, the disclosure provides an optical system, in particular an illumination system or a projection lens of a microlithographic exposure system, having an optical system axis and at least one element group including three birefringent elements each of which includes optically uniaxial material and having an aspheric surface, wherein a first birefringent element of the group has a first orientation of its optical crystal axis, a second birefringent element of the group has a second orientation of its optical crystal axis, wherein the second orientation can be described as emerging from a rotation of the first orientation, the rotation not corresponding to a rotation around the optical system axis by an angle of 90° or an integer multiple thereof, and a third birefringent element of the group has a third orientation of its optical crystal axis, wherein the third orientation can be described as emerging from a rotation of the second orientation, the rotation not corresponding to a rotation aroun
    Type: Application
    Filed: March 5, 2008
    Publication date: August 28, 2008
    Applicant: CARL ZEISS SMT AG
    Inventors: Michael Totzeck, Susanne Beder, Wilfried Clauss, Heiko Feldmann, Daniel Kraehmer, Aurelian Dodoc
  • Publication number: 20080198455
    Abstract: The invention relates to an optical system, in particular an objective or an illumination system for a microlithographic projection exposure apparatus, which in particular also permits the use of crystal materials with a high refractive index while reducing the influence of intrinsic birefringence on the imaging properties. In particular the invention relates to an optical system having at least two lens groups (10-60) with lenses of intrinsically birefringent material, wherein the lens groups (10-60) respectively comprise a first subgroup with lenses in a (100)-orientation and a second subgroup with lenses in (111)-orientation, and wherein the lenses of each subgroup are arranged rotated relative to each other about their lens axes.
    Type: Application
    Filed: February 22, 2006
    Publication date: August 21, 2008
    Applicant: CARL ZEISS SMT AG
    Inventors: Michael Totzeck, Daniel Kraehmer, Toralf Gruner
  • Publication number: 20080192225
    Abstract: The invention relates to a projection exposure system, in particular for micro-lithography. The projection exposure system according to the invention comprises a light source (18) for producing light in the EUV region. The projection exposure system further comprises a first optical system (19, 20, 21, 22, 23, 24) for illuminating a mask (25) by the light of the light source (18) and a second optical system (26, 27, 28, 29, 30, 31) for imaging the mask (25) on a component (32). At least one polarization-optical element (1) is disposed on the beam path between the light source (18) and the component (32).
    Type: Application
    Filed: April 12, 2006
    Publication date: August 14, 2008
    Applicant: CARL ZEISS SMT AG
    Inventors: Hans-Jurgen Mann, Wolfgang Singer, Toralf Gruner, Olaf Dittmann, Michael Totzeck
  • Patent number: 7411656
    Abstract: A retardation arrangement for converting an input radiation beam, incident from an input side of the retardation arrangement, into an output radiation beam which has over its cross section a spatial distribution of polarization states which can be influenced by the retardation arrangement and differs from the spatial distribution of polarization states of the input radiation, is designed as a reflective retardation arrangement. A useful cross section of the retardation arrangement has a multiplicity of retardation zones of different retardation effect. Such a mirror arrangement having a retardation effect varying as a function of location can be used to compensate undesired fluctuations in the polarization state over the cross section of an input radiation beam and/or to set specific output polarization states, for example in order to set radial or tangential polarization.
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: August 12, 2008
    Assignee: Carl Zeiss SMT AG
    Inventors: Michael Totzeck, Birgit Enkisch, Karl-Heinz Schuster
  • Patent number: 7408616
    Abstract: In an exposure method for exposing a substrate which is arranged in the area of an image plane of a projection objective as well as in a projection exposure system for performing that method, output radiation directed at the substrate and having an output polarization state is produced. Through variable adjustment of the output polarization state with the aid of at least one polarization manipulation device, the output polarization state can be formed to approach a nominal output polarization state. The polarization manipulation can be performed in a control loop on the basis of polarization-optical measuring data.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: August 5, 2008
    Assignee: Carl Zeiss SMT AG
    Inventors: Toralf Gruner, Daniel Kraehmer, Michael Totzeck, Johannes Wangler, Markus Brotsack, Nils Dieckmann, Aksel Goehnermeier, Markus Schwab, Damian Fiolka, Markus Zenzinger
  • Patent number: 7405808
    Abstract: An optical system, particularly an illumination system, of a microlithographic projection exposure apparatus contains at least one plane reflecting surface for folding the beam path. The at least one reflecting surface is arranged with respect to an optical axis of the optical system such that the intensity ratio between two mutually perpendicular polarization directions is at least substantially preserved for an axially parallel light ray deviated by the at least one reflecting surface. In accordance with a second aspect, the at least one reflecting surface is arranged such that a maximum effect on the polarization of the projection light is achieved, so as to be able to compensate for polarization dependencies which occur in other components of the illumination system.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: July 29, 2008
    Assignee: Carl Zeiss SMT AG
    Inventors: Toralf Gruner, Michael Totzeck, Damian Fiolka, Wilhelm Ulrich, Gerhard Fuerter
  • Publication number: 20080094599
    Abstract: In a projection objective for imaging a pattern arranged in the object plane of the projection objective into the image plane of the projection objective, at least one optical component is provided which has a substrate in which at least one substrate surface is covered with an interference layer system having a great spatial modulation of the reflectance and/or of the transmittance over a usable cross section of the optical component, the modulation being adapted to a spatial transmission distribution of the remaining components of the projection objective in such a way that an intensity distribution of the radiation that is measured in a pupil surface has a substantially reduced spatial modulation in comparison with a projection objective without the interference layer system.
    Type: Application
    Filed: June 3, 2005
    Publication date: April 24, 2008
    Applicant: CARL ZEISS SMT AG
    Inventors: Patrick Scheible, Alexandra Pazidis, Reiner Garreis, Michael Totzeck, Heiko Feldmann, Paul Graeupner, Hans-Juergen Rostalski, Wolfgang Singer
  • Publication number: 20080037905
    Abstract: A method and an apparatus for determining the influencing of the state of polarization of optical radiation by an optical system under test, wherein radiation with a defined entrance state of polarization is directed onto the optical system, the exit-side state of polarization is measured, and the influencing of the state of polarization is determined by the optical system with the aid of evaluation of the exit state of polarization with reference to the entrance state of polarization. An analyser arrangement which can be used for this purpose is also disclosed. The method and the apparatus are used, e.g., to determine the influencing of the state of polarization of optical radiation by an optical imaging system of prescribable aperture, the determination being performed in a pupil-resolved fashion.
    Type: Application
    Filed: October 18, 2007
    Publication date: February 14, 2008
    Applicant: CARL ZEISS SMT AG
    Inventors: Ulrich Wegmann, Michael Hartl, Markus Mengel, Manfred Dahl, Helmut Haidner, Martin Schriever, Michael Totzeck
  • Patent number: 7321465
    Abstract: A numerical optimizing method serves to reduce harmful effects caused by intrinsic birefringence in lenses of a fluoride crystal material of cubic crystal structure in an objective, particularly a projection objective for a microlithography system. Under the optimizing method, an optimizing function which takes at least one birefringence-related image aberration into account is minimized. The birefringence-related image aberration is determined from a calculation for a light ray passing through the fluoride crystal lenses. To the extent that the birefringence-related image aberration is a function of parameters of the light ray, it depends only on geometric parameters of the light ray. The numerical optimizing method is used to produce objectives in which an optical retardation as well as an asymmetry of the optical retardation are corrected. The lenses are arranged in homogeneous groups, where each homogeneous group is corrected for the optical retardation asymmetry.
    Type: Grant
    Filed: March 2, 2005
    Date of Patent: January 22, 2008
    Assignee: Carl Zeiss SMT AG
    Inventors: Michael Totzeck, Vladimir Kamenov, Toralf Gruner
  • Publication number: 20080002167
    Abstract: The invention concerns a method for operating a projection exposure apparatus to project the image of a structure of an object (5) arranged in an object plane (6) onto a substrate (10) arranged in an image plane (8). The object (5) is illuminated with light of an operating wavelength of the projection exposure apparatus according to one of several adjustable exposure modes. The light produces changes in at least one optical element (9) of the projection exposure apparatus, by which the optical properties of the projection exposure apparatus are influenced. The operation of the projection exposure apparatus makes allowance for the influencing of the optical properties of the projection exposure apparatus or a quantity dependent on the former, being calculated approximately on the basis of the exposure mode used and the structure of the object (5).
    Type: Application
    Filed: June 28, 2006
    Publication date: January 3, 2008
    Applicant: Carl Zeiss SMT AG
    Inventors: Toralf Gruner, Olaf Conradi, Nils Dieckmann, Markus Schwab, Olaf Hmann, Michael Totzeck, Daniel Kraehmer, Vladimir Kamenov
  • Publication number: 20080002172
    Abstract: A microlithographic projection exposure apparatus comprises an illumination system for generating projection light, a projection lens for imaging a reticle onto a light-sensitive surface and an optical element arranged in the projection lens and adapted for setting a desired polarization of the projection light. The optical element has a support and at least one layer, which is arranged thereon, through which the projection light can pass and which has shape-birefringent grating patterns, the distance of which from one another is less than the wavelength of the projection light. The arrangement of the grating patterns varies locally within the at least one layer. The optical element makes it possible to compensate almost completely for undesired influences of birefringent optical components such as, for example, lenses made from CaF2.
    Type: Application
    Filed: September 14, 2007
    Publication date: January 3, 2008
    Applicant: CARL ZEISS SMT AG
    Inventor: Michael Totzeck