Patents by Inventor Michael V. Miraglia

Michael V. Miraglia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230345130
    Abstract: Embodiments of the disclosure relate generally to flicker reduction in a multi-imager environment. Embodiments include methods, computer program products, and apparatuses for producing a near-field illumination using a near-field illuminator, the near-field illumination produced at a defined pulse train. A near-field image sensor may be exposed near the start of a near-field illumination pulse, and a far-field image sensor may be exposed between pulses of the near-field illumination. Some embodiments, additionally or alternatively, are configured for detecting an illuminator switch event, deactivating the near-field illuminator source, and producing, using a far-field illuminator source, a far-field illumination. Upon switching the illuminator source, some such embodiments are configured for exposing a far-field illuminator near the start of the far-field illumination pulse, and exposing a near-field image sensor near the start of the next available far-field illumination pulse.
    Type: Application
    Filed: June 28, 2023
    Publication date: October 26, 2023
    Inventors: Benjamin HEJL, Ka Man AU, Erik VAN HORN, David M. WILZ, Michael V. MIRAGLIA, Patrick GIORDANO
  • Patent number: 11736811
    Abstract: Embodiments of the disclosure relate generally to flicker reduction in a multi-imager environment. Embodiments include methods, computer program products, and apparatuses configured for producing a near-field illumination using a near-field illuminator, the near-field illumination produced at a defined pulse train. A near-field image sensor may be exposed near the start of a near-field illumination pulse, and a far-field image sensor may be exposed between pulses of the near-field illumination. Some embodiments, additionally or alternatively, are configured for detecting an illuminator switch event, deactivating the near-field illuminator source, and producing, using a far-field illuminator source, a far-field illumination. Upon switching the illuminator source, some such embodiments are configured for exposing a far-field illuminator near the start of the far-field illumination pulse, and exposing a near-field image sensor near the start of the next available far-field illumination pulse.
    Type: Grant
    Filed: September 23, 2022
    Date of Patent: August 22, 2023
    Assignee: Hand Held Products, Inc.
    Inventors: Benjamin Hejl, Ka Man Au, Erik Van Horn, David M. Wilz, Michael V. Miraglia, Patrick Giordano
  • Patent number: 11625547
    Abstract: Apparatuses, systems, and methods of manufacturing are described that provide improved tag identification. An example system includes a radio-frequency identification (RFID) scanner that receives a stream of RFID tags each associated with a respective article. The system further includes a first sensor attached to the RFID scanner that generates first positional data and a second sensor positioned separate from the first sensor that generates second positional data. The system also includes a computing device communicably coupled with the RFID scanner, the first sensor, and the second sensor. The computing device receives the stream of RFID tags, receives first positional data from the first sensor, receives second positional data from the second sensor, and determines an intended RFID tag from amongst the stream of RFID tags based upon the first positional data and the second positional data.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: April 11, 2023
    Assignee: Hand Held Products, Inc.
    Inventors: Ka Man Au, Charles Joseph Cunningham, IV, Michael J. Wells, Abhay Ravi Chandran, Rodney W. Chinn, Shashidhar Ramamurthy, Christopher T. Bouchat, Rene Martinez, Michael V. Miraglia
  • Publication number: 20230018060
    Abstract: Embodiments of the disclosure relate generally to flicker reduction in a multi-imager environment. Embodiments include methods, computer program products, and apparatuses configured for producing a near-field illumination using a near-field illuminator, the near-field illumination produced at a defined pulse train. A near-field image sensor may be exposed near the start of a near-field illumination pulse, and a far-field image sensor may be exposed between pulses of the near-field illumination. Some embodiments, additionally or alternatively, are configured for detecting an illuminator switch event, deactivating the near-field illuminator source, and producing, using a far-field illuminator source, a far-field illumination. Upon switching the illuminator source, some such embodiments are configured for exposing a far-field illuminator near the start of the far-field illumination pulse, and exposing a near-field image sensor near the start of the next available far-field illumination pulse.
    Type: Application
    Filed: September 23, 2022
    Publication date: January 19, 2023
    Inventors: Benjamin HEJL, Ka Man AU, Erik VAN HORN, David M. WILZ, Michael V. MIRAGLIA, Patrick GIORDANO
  • Patent number: 11490030
    Abstract: Embodiments of the disclosure relate generally to flicker reduction in a multi-imager environment. Embodiments include methods, computer program products, and apparatuses configured for producing a near-field illumination using a near-field illuminator, the near-field illumination produced at a defined pulse train. A near-field image sensor may be exposed near the start of a near-field illumination pulse, and a far-field image sensor may be exposed between pulses of the near-field illumination. Some embodiments, additionally or alternatively, are configured for detecting an illuminator switch event, deactivating the near-field illuminator source, and producing, using a far-field illuminator source, a far-field illumination. Upon switching the illuminator source, some such embodiments are configured for exposing a far-field illuminator near the start of the far-field illumination pulse, and exposing a near-field image sensor near the start of the next available far-field illumination pulse.
    Type: Grant
    Filed: September 2, 2021
    Date of Patent: November 1, 2022
    Assignee: Hand Held Products, Inc.
    Inventors: Benjamin Hejl, Ka Man Au, Erik Van Horn, David M. Wilz, Michael V. Miraglia, Patrick Giordano
  • Patent number: 11212460
    Abstract: Embodiments of the disclosure relate generally to flicker reduction in a multi-imager environment. Embodiments include methods, computer program products, and apparatuses configured for producing a near-field illumination using a near-field illuminator, the near-field illumination produced at a defined pulse train. A near-field image sensor may be exposed near the start of a near-field illumination pulse, and a far-field image sensor may be exposed between pulses of the near-field illumination. Some embodiments, additionally or alternatively, are configured for detecting an illuminator switch event, deactivating the near-field illuminator source, and producing, using a far-field illuminator source, a far-field illumination. Upon switching the illuminator source, some such embodiments are configured for exposing a far-field illuminator near the start of the far-field illumination pulse, and exposing a near-field image sensor near the start of the next available far-field illumination pulse.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: December 28, 2021
    Assignee: Hand Held Products, Inc.
    Inventors: Benjamin Hejl, Ka Man Au, Erik Van Horn, David M. Wilz, Michael V. Miraglia, Patrick Giordano
  • Publication number: 20210400183
    Abstract: Embodiments of the disclosure relate generally to flicker reduction in a multi-imager environment. Embodiments include methods, computer program products, and apparatuses configured for producing a near-field illumination using a near-field illuminator, the near-field illumination produced at a defined pulse train. A near-field image sensor may be exposed near the start of a near-field illumination pulse, and a far-field image sensor may be exposed between pulses of the near-field illumination. Some embodiments, additionally or alternatively, are configured for detecting an illuminator switch event, deactivating the near-field illuminator source, and producing, using a far-field illuminator source, a far-field illumination. Upon switching the illuminator source, some such embodiments are configured for exposing a far-field illuminator near the start of the far-field illumination pulse, and exposing a near-field image sensor near the start of the next available far-field illumination pulse.
    Type: Application
    Filed: September 2, 2021
    Publication date: December 23, 2021
    Applicant: Hand Held Products, Inc.
    Inventors: Benjamin HEJL, Ka Man AU, Erik VAN HORN, David M. WILZ, Michael V. MIRAGLIA, Patrick GIORDANO
  • Publication number: 20210303806
    Abstract: Apparatuses, systems, and methods of manufacturing are described that provide improved tag identification. An example system includes a radio-frequency identification (RFID) scanner that receives a stream of RFID tags each associated with a respective article. The system further includes a first sensor attached to the RFID scanner that generates first positional data and a second sensor positioned separate from the first sensor that generates second positional data. The system also includes a computing device communicably coupled with the RFID scanner, the first sensor, and the second sensor. The computing device receives the stream of RFID tags, receives first positional data from the first sensor, receives second positional data from the second sensor, and determines an intended RFID tag from amongst the stream of RFID tags based upon the first positional data and the second positional data.
    Type: Application
    Filed: March 26, 2021
    Publication date: September 30, 2021
    Inventors: Ka Man AU, Charles Joseph CUNNINGHAM, IV, Michael J. WELLS, Abhay RAVI CHANDRAN, Rodney W. CHINN, Shashidhar RAMAMURTHY, Christopher T. BOUCHAT, Rene MARTINEZ, Michael V. MIRAGLIA
  • Publication number: 20210274084
    Abstract: Embodiments of the disclosure relate generally to flicker reduction in a multi-imager environment. Embodiments include methods, computer program products, and apparatuses configured for producing a near-field illumination using a near-field illuminator, the near-field illumination produced at a defined pulse train. A near-field image sensor may be exposed near the start of a near-field illumination pulse, and a far-field image sensor may be exposed between pulses of the near-field illumination. Some embodiments, additionally or alternatively, are configured for detecting an illuminator switch event, deactivating the near-field illuminator source, and producing, using a far-field illuminator source, a far-field illumination. Upon switching the illuminator source, some such embodiments are configured for exposing a far-field illuminator near the start of the far-field illumination pulse, and exposing a near-field image sensor near the start of the next available far-field illumination pulse.
    Type: Application
    Filed: February 28, 2020
    Publication date: September 2, 2021
    Applicant: Hand Held Products, Inc.
    Inventors: Benjamin HEJL, Ka Man Au, Erik Van Horn, David M. Wilz, Michael V. Miraglia, Patrick Giordano
  • Patent number: 10990769
    Abstract: Apparatuses, systems, and methods of manufacturing are described that provide improved tag identification. An example system includes a radio-frequency identification (RFID) scanner that receives a stream of RFID tags each associated with a respective article. The system further includes a first sensor attached to the RFID scanner that generates first positional data and a second sensor positioned separate from the first sensor that generates second positional data. The system also includes a computing device communicably coupled with the RFID scanner, the first sensor, and the second sensor. The computing device receives the stream of RFID tags, receives first positional data from the first sensor, receives second positional data from the second sensor, and determines an intended RFID tag from amongst the stream of RFID tags based upon the first positional data and the second positional data.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: April 27, 2021
    Assignee: Hand Held Products, Inc.
    Inventors: Ka Man Au, Charles Joseph Cunningham, IV, Michael J. Wells, Abhay Ravi Chandran, Rodney W. Chinn, Shashidhar Ramamurthy, Christopher T. Bouchat, Rene Martinez, Michael V. Miraglia
  • Patent number: 8517271
    Abstract: An optical code symbol reading system including a hand-supportable housing having a light transmission aperture. A manually-actuated trigger switch is integrated within the housing. An optical code symbol reading subsystem is disposed in the housing for optically reading a code symbol in the field external to the light transmission aperture, and generating symbol character data representative of the read code symbol. One or more light emitting diodes (LEDs) are disposed in the housing, for producing a visible illumination. Also, an optical-waveguide structure is disposed in the housing for coupling visible illumination produced from the one or more LEDs, so as to illuminate the region about the manually-actuated trigger switch, thereby causing the optically-translucent region about the manually-actuated trigger switch to glow and visually indicate where it is located on the hand-supportable housing.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: August 27, 2013
    Assignee: Metrologic Instruments, Inc.
    Inventors: Anatoly Kotlarsky, Xiaoxun Zhu, Michael Veksland, Ka Man Au, Patrick Giordano, Weizhen Yan, Jie Ren, Taylor Smith, Michael V. Miraglia, C. Harry Knowles, Sudhin Mandal, Shawn De Foney, Christopher Allen, David M. Wilz, Sr.
  • Patent number: 8479992
    Abstract: An optical code symbol reading system including a housing having a light transmission aperture, and at least one sound port formed in the housing. The system includes an optical code symbol reading subsystem for optically reading a code symbol in the field external to the light transmission aperture, and generating symbol character data representative of the read code symbol. An electro-acoustic transducer is disposed in the housing for producing sonic energy. Also, an acoustic-waveguide structure is disposed in the housing, for coupling the sonic energy produced from the electro-acoustic transducer, to the at least sound wave port formed the housing, to audibly signal the reading of a code symbol to the operator of the optical code symbol reading system.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: July 9, 2013
    Assignee: Metrologic Instruments, Inc.
    Inventors: Anatoly Kotlarsky, Xiaoxun Zhu, Michael Veksland, Ka Man Au, Patrick Giordano, Weizhen Yan, Jie Ren, Taylor Smith, Michael V. Miraglia, C. Harry Knowles, Sudhin Mandal, Shawn De Foney, Christopher Allen, David M. Wilz, Sr.
  • Patent number: 8317105
    Abstract: A method of unlocking restricted extended classes of features and functionalities embodied within an optical scanning system having an extended programming mode. The method involves providing an optical scanning system supporting baseline classes of features and functionalities, and having an extended feature class programming mode for programming extended classes of features and functionalities, in addition to the baseline classes of features and functionalities. A license key is assigned to the optical scanning system, for unlocking at least one of the extended classes of features and functionalities, and programming the optical scanning system to operate with at least one of the extended classes of feature and functionalities, in addition to the baseline classes of features and functionalities. A license is procured to unlock and use at least one of the extended classes of feature and functionalities, and obtaining said license key assigned to the optical scanning system.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: November 27, 2012
    Assignee: Metrologic Instruments, Inc.
    Inventors: Anatoly Kotlarsky, Xiaoxun Zhu, Michael Veksland, Ka Man Au, Patrick Giordano, Weizhen Yan, Jie Ren, Taylor Smith, Michael V. Miraglia, C. Harry Knowles, Sudhin Mandal, Shawn De Foney, Christopher Allen, David M. Wilz, Sr.
  • Publication number: 20120168512
    Abstract: An optical code symbol reading system including a hand-supportable housing having a light transmission aperture. A manually-actuated trigger switch is integrated within the housing. An optical code symbol reading subsystem is disposed in the housing for optically reading a code symbol in the field external to the light transmission aperture, and generating symbol character data representative of the read code symbol. One or more light emitting diodes (LEDs) are disposed in the housing, for producing a visible illumination. Also, an optical-waveguide structure is disposed in the housing for coupling visible illumination produced from the one or more LEDs, so as to illuminate the region about the manually-actuated trigger switch, thereby causing the optically-translucent region about the manually-actuated trigger switch to glow and visually indicate where it is located on the hand-supportable housing.
    Type: Application
    Filed: September 7, 2011
    Publication date: July 5, 2012
    Inventors: Anatoly Kotlarsky, Xiaoxun Zhu, Michael Veksland, Ka Man Au, Patrick Giordano, Weizhen Yan, Jie Ren, Taylor Smith, Michael V. Miraglia, C. Harry Knowles, Sudhin Mandal, Shawn De Foney, Christopher Allen, David M. Wilz, SR.
  • Publication number: 20120168511
    Abstract: An optical code symbol reading system including a housing having a light transmission aperture, and at least one sound port formed in the housing. The system includes an optical code symbol reading subsystem for optically reading a code symbol in the field external to the light transmission aperture, and generating symbol character data representative of the read code symbol. An electro-acoustic transducer is disposed in the housing for producing sonic energy. Also, an acoustic-waveguide structure is disposed in the housing, for coupling the sonic energy produced from the electro-acoustic transducer, to the at least sound wave port formed the housing, to audibly signal the reading of a code symbol to the operator of the optical code symbol reading system.
    Type: Application
    Filed: September 7, 2011
    Publication date: July 5, 2012
    Inventors: Anatoly Kotlarsky, Xiaoxun Zhu, Michael Veksland, Ka Man Au, Patrick Giordano, Weizhen Yan, Jie Ren, Taylor Smith, Michael V. Miraglia, C. Harry Knowles, Sudhin Mandal, Shawn De Foney, Christopher Allen, David M. Wilz, SR.
  • Publication number: 20120097743
    Abstract: A method of unlocking restricted extended classes of features and functionalities embodied within an optical scanning system having an extended programming mode. The method involves providing an optical scanning system supporting baseline classes of features and functionalities, and having an extended feature class programming mode for programming extended classes of features and functionalities, in addition to the baseline classes of features and functionalities. A license key is assigned to the optical scanning system, for unlocking at least one of the extended classes of features and functionalities, and programming the optical scanning system to operate with at least one of the extended classes of feature and functionalities, in addition to the baseline classes of features and functionalities. A license is procured to unlock and use at least one of the extended classes of feature and functionalities, and obtaining said license key assigned to the optical scanning system.
    Type: Application
    Filed: June 9, 2011
    Publication date: April 26, 2012
    Inventors: Anatoly Kotlarsky, Xiaoxun Zhu, Michael Veksland, Ka Man Au, Patrick Giordano, Weizhen Yan, Jie Ren, Taylor Smith, Michael V. Miraglia, C. Harry Knowles, Sudhin Mandal, Shawn De Foney, Christopher Allen, David M. Wilz, SR.
  • Patent number: 8157174
    Abstract: A digital image capture and processing system including a housing having an imaging window, and an image formation and detection subsystem, disposed in the housing, having an area-type image detection array supporting a single snap-shot mode of image acquisition and a periodic snap-shot mode of image acquisition during object illumination and imaging operations. The system also includes an illumination subsystem, with an illumination array, for producing a field of illumination within the FOV, and illuminating the object detected in the FOV, so that the illumination reflects off the object and is transmitted back through the light transmission aperture and onto the image detection array to form the 2D digital image of the object.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: April 17, 2012
    Assignee: Metrologic Instruments, Inc.
    Inventors: Anatoly Kotlarsky, Xiaoxun Zhu, Michael Veksland, Ka Man Au, Patrick Giordano, Weizhen Yan, Jie Ren, Taylor Smith, Michael V. Miraglia, C. Harry Knowles, Sudhin Mandal, Shawn De Foney, Christopher Allen, David M. Wilz, Sr.
  • Patent number: 8157175
    Abstract: A digital image capture and processing system including a housing having an imaging window; and an image formation and detection subsystem supporting a snap-shot mode of the operation and a video mode of operation. The system includes image formation optics for projecting a field of view (FOV) through said imaging window and upon an object within the FOV, and forming an image of the object on an area-type image detection array having a plurality of rows of image detection elements, and detecting 2D digital images of the object while object illumination and imaging operations. The system also includes an illumination subsystem, with an illumination array, for producing a field of illumination within the FOV, and illuminating the object detected in the FOV, so that the illumination reflects off the object and is transmitted back through the light transmission aperture and onto the image detection array to form the 2D digital image of the object.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: April 17, 2012
    Assignee: Metrologic Instruments, Inc.
    Inventors: Anatoly Kotlarsky, Xiaoxun Zhu, Michael Veksland, Ka Man Au, Patrick Giordano, Weizhen Yan, Jie Ren, Taylor Smith, Michael V. Miraglia, C. Harry Knowles, Sudhin Mandal, Shawn De Foney, Christopher Allen, David M. Wilz, Sr.
  • Patent number: 8132731
    Abstract: A digital image capture and processing system includes a housing having an imaging window with an illumination-focusing lens structure integrated therewithin. A printed circuit (PC) board is mounted in the housing and has a front surface, a rear surface, and a light transmission aperture spatially aligned with the imaging window. An area-type image detection array is mounted on the rear surface of the PC board. A linear array of light emitting diodes (LEDs) is mounted on the front surface of the PC board, adjacent the light transmission aperture and aligned with the illumination-focusing lens structure. The LEDs produce a plurality of illumination beams which are transmitted through the illumination-focusing lens structure to generate a field of illumination that is projected within the FOV of the system. Illumination reflected and/or scattered off an object within the FOV is retransmitted through the imaging window and the light transmission aperture, and detected by the area-type image detection array.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: March 13, 2012
    Assignee: Metrologic Instruments, Inc.
    Inventors: Anatoly Kotlarsky, Xiaoxun Zhu, Michael Veksland, Ka Man Au, Patrick Giordano, Weizhen Yan, Jie Ren, Taylor Smith, Michael V. Miraglia, C. Harry Knowles, Sudhin Mandal, Shawn De Foney, Christopher Allen, David M. Wilz, Sr.
  • Patent number: 8100331
    Abstract: A digital image capture and processing system having single printed circuit (PC) board with light transmission aperture, wherein a first linear array of visible light emitting diodes (LEDs) are mounted on the rear side of the PC board for producing a targeting illumination beam, and wherein a second linear array of visible light emitting diodes (LEDs) are mounted on the front side of the PC board for producing a field of visible illumination within the field of view (FOV) of the system. The targeting illumination beam is centrally disposed within the field of visible illumination.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: January 24, 2012
    Assignee: Metrologic Instruments, Inc.
    Inventors: Anatoly Kotlarsky, Xiaoxun Zhu, Michael Veksland, Ka Man Au, Patrick Giordano, Weizhen Yan, Jie Ren, Taylor Smith, Michael V. Miraglia, C. Harry Knowles, Sudhin Mandal, Shawn De Foney, Christopher Allen, David M. Wilz, Sr.