Patents by Inventor Miesher Rodrigues

Miesher Rodrigues has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11327464
    Abstract: A method of manufacturing a collimator (134) on a three-dimensional printer (510) includes obtaining design specifications (536) for the collimator, the design specifications including a channel perimeter pattern and an overall collimator thickness, determining a first quantity of deposit layer permutation types based on the channel perimeter pattern, determining a respective second quantity of permutation layer elements (310, 320, 330) for each respective one of the deposit layer permutations, generating respective sets of sequences for each respective one of the deposit layer permutations, the number of sets equal to the respective second quantity for the corresponding deposit layer permutations, assembling the respective sets of sequences into a three-dimensional print file (538), providing the three-dimensional file to the three-dimensional printer, and manufacturing the collimator by depositing additive layers of material based on contents of the three-dimensional file.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: May 10, 2022
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventor: Miesher Rodrigues
  • Patent number: 11191515
    Abstract: For SPECT-based internal dose estimation, a portable detector is used to sample activity. The portable detector may selectively use far-field or near-field imaging for a SPECT scan. A camera and/or gyroscope assist in determining emission location and/or aligning activities from the different times. The time-activity curve or another dose is estimated using activities from different times where the activity for at least one time is from the portable detector, which may allow for more frequent sampling of activity and more accurate dose estimation.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: December 7, 2021
    Assignee: Siemens Medical Solutions USA, Inc
    Inventors: Alexander Hans Vija, Francesc dAssis Massanes Basi, Miesher Rodrigues
  • Publication number: 20210290189
    Abstract: A Compton camera for medical imaging is divided into segments with each segment including part of the scatter detector, part of the catcher detector, and part of the electronics. The different segments may be positioned together to form the Compton camera arcing around part of the patient space. By using segments, any number of segments may be used to fit with a multi-modality imaging system.
    Type: Application
    Filed: August 7, 2018
    Publication date: September 23, 2021
    Inventors: Alexander Hans Vija, Miesher Rodrigues, James Frank Caruba
  • Publication number: 20210290196
    Abstract: To optimize image quality and/or sensitivity, a Compton camera is adaptable. The scatter and/or catcher detectors may move closer to and/or further away from a patient and/or each other. This adaptation allows a balancing of image quality and sensitivity by altering the geometry.
    Type: Application
    Filed: August 7, 2018
    Publication date: September 23, 2021
    Inventor: Miesher Rodrigues
  • Publication number: 20210282728
    Abstract: A multi-modality imaging system allows for selectable photoelectric effect and/or Compton effect detection. The camera or detector is a module with a catcher detector. Depending on the use or design, a scatter detector and/or a coded physical aperture are positioned in front of the catcher detector relative to the patient space. For low energies, emissions passing through the scatter detector continue through the coded aperture to be detected by the catcher detector using the photoelectric effect. Alternatively, the scatter detector is not provided. For higher energies, some emissions scatter at the scatter detector, and resulting emissions from the scattering pass by or through the coded aperture to be detected at the catcher detector for detection using the Compton effect. Alternatively, the coded aperture is not provided. The same module may be used to detect using both the photoelectric and Compton effects where both the scatter detector and coded aperture are provided with the catcher detector.
    Type: Application
    Filed: August 7, 2018
    Publication date: September 16, 2021
    Inventors: Alexander Hans Vija, Miesher Rodrigues
  • Publication number: 20210282725
    Abstract: To capture more emitted photons with a Compton camera, the scatter detector is tilted (non-orthogonal angle) relative to a radial from the isocenter of the imaging system. The tilt creates a greater volume for scatter interaction. To capture more scatter photons, the catcher detector is non-planar, such as a multi-faced detector at least partially surrounding a volume behind the scatter detector. The tilted scatter detector alone, the non-planar catcher detector alone, or the tilted scatter detector and the non-planar catcher detector are used in the Compton camera.
    Type: Application
    Filed: August 7, 2018
    Publication date: September 16, 2021
    Inventors: Miesher Rodrigues, Ronald E. Malmin
  • Publication number: 20210133589
    Abstract: For training to and/or estimating location, energy level, and/or time of occurrence of incident radiation on a solid-state detector, a machine-learned model, such as a neural network, performs the inverse problem. An estimate of the location, energy level, and/or time is output by the machine-learned model in response to input of the detected signal (e.g., voltage over time). The estimate may account for material property variation of the solid-state detector in a rapid and easily calculated way, and with a minimal amount of data.
    Type: Application
    Filed: April 16, 2020
    Publication date: May 6, 2021
    Inventors: Srutarshi Banerjee, Miesher Rodrigues
  • Publication number: 20210133564
    Abstract: A method of training a neural network modeling physical phenomena of semiconductor material includes receiving plurality of training pairs corresponding to a semiconductor material. Each training pair comprises an input charge to a distinct voxel of the semiconductor material and one or more output signals generated by the distinct voxel in response to the input charge. A neural network is trained using the training pairs. The neural network models the semiconductor material and each voxel is represented in the neural network by a tensor field defined by (i) a location of the voxel within the semiconductor material and (ii) one or more physics-based phenomena within the voxel at the location.
    Type: Application
    Filed: April 16, 2020
    Publication date: May 6, 2021
    Inventors: Srutarshi Banerjee, Miesher Rodrigues
  • Publication number: 20210106302
    Abstract: For calibration of internal dose in nuclear imaging, the dose model used for estimating internal dose in a patient is calibrated. One or more values of the dose model (e.g., a physics simulation, dose kernels, or a transport model) are set based on measured dose. The dose may be measured relative to specific tissues and/or isotopes, providing for tracer and tissue specific calibration. For example, dose from the tracer to be injected into the patient is estimated from emissions as well as measured by a dosimeter in a tissue mimicking tissue mimicking object. These doses are used to calibrate the dose model, which calibrated dose model is then used to determine internal dose for the patient.
    Type: Application
    Filed: September 10, 2020
    Publication date: April 15, 2021
    Inventors: Alexander Hans Vija, Michal Cachovan, Miesher Rodrigues
  • Publication number: 20210096536
    Abstract: A method of manufacturing a collimator (134) on a three-dimensional printer (510) includes obtaining design specifications (536) for the collimator, the design specifications including a channel perimeter pattern and an overall collimator thickness, determining a first quantity of deposit layer permutation types based on the channel perimeter pattern, determining a respective second quantity of permutation layer elements (310, 320, 330) for each respective one of the deposit layer permutations, generating respective sets of sequences for each respective one of the deposit layer permutations, the number of sets equal to the respective second quantity for the corresponding deposit layer permutations, assembling the respective sets of sequences into a three-dimensional print file (538), providing the three-dimensional file to the three-dimensional printer, and manufacturing the collimator by depositing additive layers of material based on contents of the three-dimensional file.
    Type: Application
    Filed: March 8, 2018
    Publication date: April 1, 2021
    Inventor: Miesher Rodrigues
  • Publication number: 20160089091
    Abstract: A computed-tomography (CT) apparatus including a CT scanner including a rotating X-ray source, and a plurality of photon-counting detectors (PCDs) arranged in a fixed detector ring to capture incident X-ray photons emitted from the X-ray source. The plurality of PCDs includes a first plurality of first PCDs, each first PCD having a first collimator on a surface of the first PCD to block X-ray photons emitted from the X-ray source, the first collimator having openings of a first size, and a second plurality of second PCDs, each second PCD having a second collimator on a surface of the second PCD to block the X-ray photons emitted from the X-ray source, the second collimator having openings of a second size, the first size being different from the second size.
    Type: Application
    Filed: September 29, 2014
    Publication date: March 31, 2016
    Applicants: Toshiba Medical Systems Corporation
    Inventors: Daniel Gagnon, Miesher Rodrigues, Yuexing Zhang