Patents by Inventor Mihaela A. Balseanu

Mihaela A. Balseanu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11932940
    Abstract: Silyl pseudohalides having a general formula of R4-nSiXn, where n is a range of 1-4, each R is independently selected from H, alkyl, alkenyl, aryl, amino, alkyl amino, alkoxide, and phosphine groups, and each X is a pseudohalide selected from nitrile, cyanate, isocyanate, thiocyanate, isothiocyanate, selenocyanate and isoselenocyanate are disclosed. Further, some embodiments of the disclosure provide methods for depositing silicon-containing films using silyl pseudohalides.
    Type: Grant
    Filed: November 12, 2020
    Date of Patent: March 19, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Keenan N. Woods, Cong Trinh, Mark Saly, Mihaela A. Balseanu, Maribel Maldonado-Garcia, Lisa J. Enman
  • Patent number: 11930637
    Abstract: Described is selective deposition of a silicon nitride (SiN) trap layer to form a memory device. A sacrificial layer is used for selective deposition in order to permit selective trap deposition. The trap layer is formed by deposition of a mold including a sacrificial layer, memory hole (MH) patterning, sacrificial layer recess from MH side, forming a deposition-enabling layer (DEL) on a side of the recess, and selective deposition of trap layer. After removing the sacrificial layer from a slit pattern opening, the deposition-enabling layer (DEL) is converted into an oxide to be used as blocking oxide.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: March 12, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Chang Seok Kang, Tomohiko Kitajima, Mihaela A. Balseanu
  • Patent number: 11887818
    Abstract: Apparatus and methods to control the phase of power sources for plasma process regions in a batch process chamber. A master exciter controls the phase of the power sources during the process sequence based on feedback from the match circuits of the respective plasma sources.
    Type: Grant
    Filed: October 11, 2021
    Date of Patent: January 30, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Tsutomu Tanaka, John C. Forster, Ran Liu, Kenichi Ohno, Ning Li, Mihaela Balseanu, Keiichi Tanaka, Li-Qun Xia
  • Patent number: 11887847
    Abstract: Methods and precursors for selectively depositing a metal film on a silicon nitride surface relative to a silicon oxide surface are described. The substrate comprising both surfaces is exposed to a blocking compound to selectively block the silicon oxide surface. A metal film is then selectively deposited on the silicon nitride surface.
    Type: Grant
    Filed: November 28, 2022
    Date of Patent: January 30, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kurt Fredrickson, Atashi Basu, Mihaela A. Balseanu, Ning Li
  • Patent number: 11800824
    Abstract: Methods of forming a stack without damaging underlying layers are discussed. The encapsulation layer and dielectric layer are highly conformal, have low etch rates, and good hermeticity. These films may be used to protect chalcogen materials in PCRAM devices or any substrates sensitive to oxygen or moisture. Some embodiments utilize a two-step process comprising a first ALD process to form an encapsulation layer and oxidation process to form a dielectric layer.
    Type: Grant
    Filed: March 24, 2021
    Date of Patent: October 24, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Maribel Maldonado-Garcia, Cong Trinh, Mihaela A. Balseanu
  • Patent number: 11732356
    Abstract: Methods of depositing an encapsulation stack without damaging underlying layers are discussed. The encapsulation stacks are highly conformal, have low etch rates, low atomic oxygen concentrations, good hermeticity and good adhesion. These films may be used to protect chalcogen materials in PCRAM devices. Some embodiments utilize a two-step process comprising a first ALD process to form a protective layer and a second plasma ALD process to form an encapsulation layer.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: August 22, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Cong Trinh, Mihaela A. Balseanu, Maribel Maldonado-Garcia, Ning Li, Mark Saly, Bhaskar Jyoti Bhuyan, Keenan N. Woods, Lisa J. Enman
  • Patent number: 11713507
    Abstract: Methods for plasma enhanced atomic layer deposition (PEALD) of low-? films are described. A method of depositing a film comprises exposing a substrate to a silicon precursor having the general formula (I) wherein R1, R2, R3, R4, R5, and R6 are independently selected from hydrogen (H), substituted alkyl, or unsubstituted alkyl; purging the processing chamber of the silicon precursor; exposing the substrate to a carbon monoxide (CO) plasma to form one or more of a silicon oxycarbide (SiOC) or silicon oxycarbonitride (SiOCN) film on the substrate; and purging the processing chamber.
    Type: Grant
    Filed: June 15, 2022
    Date of Patent: August 1, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Shuaidi Zhang, Ning Li, Mihaela A. Balseanu
  • Patent number: 11692267
    Abstract: Methods for modifying a susceptor having a silicon carbide (SiC) surface comprising exposing the silicon carbide surface (SiC) to an atmospheric plasma are described. The method increases the atomic oxygen content of the silicon carbide (SiC) surface.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: July 4, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Francis Kanyiri Mungai, Vijayabhaskara Venkatagiriyappa, Yung-Cheng Hsu, Keiichi Tanaka, Mario D. Silvetti, Mihaela A. Balseanu
  • Publication number: 20230170210
    Abstract: Methods and precursors for selectively depositing a metal film on a silicon nitride surface relative to a silicon oxide surface are described. The substrate comprising both surfaces is exposed to a blocking compound to selectively block the silicon oxide surface. A metal film is then selectively deposited on the silicon nitride surface.
    Type: Application
    Filed: November 28, 2022
    Publication date: June 1, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Kurt Fredrickson, Atashi Basu, Mihaela A. Balseanu, Ning Li
  • Publication number: 20230096772
    Abstract: Apparatus and methods for supplying a vapor to a processing chamber such as a film deposition chamber are described. The vapor delivery apparatus comprises an inlet conduit and an outlet conduit, in fluid communication with an ampoule. A needle valve device restricts flow through the outlet conduit.
    Type: Application
    Filed: December 5, 2022
    Publication date: March 30, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Maribel Maldonado-Garcia, Cong Trinh, Mihaela A. Balseanu, Kevin Griffin, Ning Li, Zohreh Razavi Hesabi
  • Patent number: 11581213
    Abstract: Apparatus and methods for vacuum chucking a substrate to a susceptor. The susceptor comprises one or more angularly spaced pockets are positioned around a center axis of the susceptor, the one or more angularly spaced pockets having an inner pocket and an outer pocket. The susceptor can be configured as an intermediate chuck having one or more pucks positioned within the inner pocket or as a distributed chuck having one or more pucks positioned within the outer pocket. The one or more pucks has a center hole, at least one radial channel and at least one circular channel having chuck holes for vacuum chucking a substrate.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: February 14, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Abhishek Chowdhury, Vijayabhaskara Venkatagiriyappa, Mihaela A. Balseanu, Jyoti Prakash Deo, Srinivas Ramakrishna, Keiichi Tanaka, Mandyam Sriram, Francis Kanyiri Mungai, Mario D. Silvetti, Sriharish Srinivasan
  • Publication number: 20230010568
    Abstract: Methods and apparatus for processing a substrate are provided herein. For example, a method of processing a substrate comprises a) removing oxide from a metal layer disposed in a dielectric layer on the substrate disposed in a processing chamber, b) selectively depositing a self-assembled monolayer (SAM) on the metal layer using atomic layer deposition, c) depositing a precursor while supplying water to form one of an aluminum oxide (AlO) layer on the dielectric layer or a low-k dielectric layer on the dielectric layer, d) supplying at least one of hydrogen (H2) or ammonia (NH3) to remove the self-assembled monolayer (SAM), and e) depositing one of a silicon oxycarbonitride (SiOCN) layer or a silicon nitride (SiN) layer atop the metal layer and the one of the aluminum oxide (AlO) layer on the dielectric layer or the low-k dielectric layer on the dielectric layer.
    Type: Application
    Filed: April 13, 2022
    Publication date: January 12, 2023
    Inventors: Suketu PARIKH, Mihaela A. BALSEANU, Bhaskar Jyoti BHUYAN, Ning LI, Mark Joseph SALY, Aaron Michael DANGERFIELD, David THOMPSON, Abhijit B. MALLICK
  • Patent number: 11515151
    Abstract: Methods and precursors for selectively depositing a metal film on a silicon nitride surface relative to a silicon oxide surface are described. The substrate comprising both surfaces is exposed to a blocking compound to selectively block the silicon oxide surface. A metal film is then selectively deposited on the silicon nitride surface.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: November 29, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kurt Fredrickson, Atashi Basu, Mihaela Balseanu, Ning Li
  • Publication number: 20220325412
    Abstract: Methods for atomic layer deposition (ALD) of plasma enhanced atomic layer deposition (PEALD) of low-? films are described.
    Type: Application
    Filed: June 24, 2022
    Publication date: October 13, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Shuaidi Zhang, Ning Li, Mihaela A. Balseanu, Bhaskar Jyoti Bhuyan, Mark Saly, Thomas Knisley
  • Publication number: 20220310909
    Abstract: Methods of forming a stack without damaging underlying layers are discussed. The encapsulation layer and dielectric layer are highly conformal, have low etch rates, and good hermeticity. These films may be used to protect chalcogen materials in PCRAM devices or any substrates sensitive to oxygen or moisture. Some embodiments utilize a two-step process comprising a first ALD process to form an encapsulation layer and oxidation process to form a dielectric layer.
    Type: Application
    Filed: March 24, 2021
    Publication date: September 29, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Maribel Maldonado-Garcia, Cong Trinh, Mihaela A. Balseanu
  • Publication number: 20220307134
    Abstract: Methods for plasma enhanced atomic layer deposition (PEALD) of low-? films are described. A method of depositing a film comprises exposing a substrate to a silicon precursor having the general formula (I) wherein R1, R2, R3, R4, R5, and R6 are independently selected from hydrogen (H), substituted alkyl, or unsubstituted alkyl; purging the processing chamber of the silicon precursor; exposing the substrate to a carbon monoxide (CO) plasma to form one or more of a silicon oxycarbide (SiOC) or silicon oxycarbonitride (SiOCN) film on the substrate; and purging the processing chamber.
    Type: Application
    Filed: June 15, 2022
    Publication date: September 29, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Shuaidi Zhang, Ning Li, Mihaela A. Balseanu
  • Patent number: 11447865
    Abstract: Methods for atomic layer deposition (ALD) of plasma enhanced atomic layer deposition (PEALD) of low-K films are described.
    Type: Grant
    Filed: November 17, 2020
    Date of Patent: September 20, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Shuaidi Zhang, Ning Li, Mihaela A. Balseanu, Bhaskar Jyoti Bhuyan, Mark Saly, Thomas Knisley
  • Publication number: 20220262619
    Abstract: Methods of manufacturing memory devices are provided. The methods improve the quality of a selectively deposited silicon-containing dielectric layer. The method comprises selectively depositing a silicon-containing dielectric layer in a recessed region of a film stack. The selectively deposited silicon-containing dielectric layer is then exposed to a high-density plasma and annealed at a temperature greater than 800 ° C. to provide a silicon-containing dielectric film having a wet etch rate of less than 4 ?/min.
    Type: Application
    Filed: February 9, 2022
    Publication date: August 18, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Ning Li, Shuaidl Zhang, Mihaela A. Balseanu, Qi Gao, Rajesh Prasad, Tomohiko Kitajima, Chang Seok Kang, Deven Matthew Raj Mittal, Kyu-Ha Shim
  • Publication number: 20220205095
    Abstract: Apparatus and methods for modifying a susceptor having a silicon carbide (SiC) surface. The method includes exposing the silicon carbide surface (SiC) to an atmospheric plasma. The method increases the atomic oxygen content of the silicon carbide (SiC) surface. The disclosure also describes a plasma treatment apparatus having a susceptor holding assembly and a plasma nozzle.
    Type: Application
    Filed: December 31, 2020
    Publication date: June 30, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Francis Kanyiri Mungai, Vijayabhaskara Venkatagiriyappa, Yung-Cheng Hsu, Keiichi Tanaka, Mario D. Silvetti, Mihaela A. Balseanu
  • Patent number: 11371144
    Abstract: Methods for plasma enhanced atomic layer deposition (PEALD) of low-K films are described. A method of depositing a film comprises exposing a substrate to a silicon precursor having the general formula (I) wherein R1, R2, R3, R4, R5, and R6 are independently selected from hydrogen (H), substituted alkyl, or unsubstituted alkyl; purging the processing chamber of the silicon precursor; exposing the substrate to a carbon monoxide (CO) plasma to form one or more of a silicon oxycarbide (SiOC) or silicon oxycarbonitride (SiOCN) film on the substrate; and purging the processing chamber.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: June 28, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Shuaidi Zhang, Ning Li, Mihaela Balseanu