Patents by Inventor Miho Yamauchi

Miho Yamauchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190323136
    Abstract: A surface-treated material (10) according to the present invention comprises an electroconductive substrate (1) and a surface treatment film (2) formed of at least one or more layers of metal layers (3 and 4) which are formed on the electroconductive substrate (1), wherein among the at least one or more layers of metal layers (3 and 4), the lowermost metal layer (3) which is directly formed on the electroconductive substrate (1) comprises a plurality of metal-buried portions (3a) that are scattered in the electroconductive substrate (1), branch from a surface of the electroconductive substrate (1) and widely extend toward the inside thereof, and as a vertical cross section of the surface-treated material (10) is viewed, in which at least one of the metal-buried portions (3a) exists in the electroconductive substrate (1), an average value of an area ratio of the metal-buried portion (3a) occupying the predetermined observation region of the electroconductive substrate (1) is in a range of 5% or more and 50% or
    Type: Application
    Filed: December 26, 2017
    Publication date: October 24, 2019
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Yoshiaki KOBAYASHI, Miho YAMAUCHI
  • Publication number: 20190169764
    Abstract: A surface-treated material of the present disclosure has a conductive substrate, and a surface treatment film which includes at least one layer of metal layers and is formed on the conductive substrate. The surface treatment film is a plating film. The surface treatment film is formed on a whole surface or a part of the conductive substrate through a zinc-containing layer that contains zinc as a main component and has a thickness of 50 nm or less, or is formed on the conductive substrate without through the zinc-containing layer. The surface-treated material has a ratio of a contact area to a test area of 85% or more as measured according to a tape test method defined in JIS H 8504: 1999.
    Type: Application
    Filed: November 30, 2018
    Publication date: June 6, 2019
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Miho YAMAUCHI, Shuichi KITAGAWA, Yoshiaki KOBAYASHI
  • Publication number: 20190134609
    Abstract: A catalyst comprising: a titanium oxide having an anatase-type crystal structure, and having the vertices and the ridge lines, wherein in a single titanium oxide particle, a vertex density per unit surface area is 8.0×10?4 nm?2 or more, and a ridge line density per unit surface area is 5.0×10?2 nm or more, or a ridge line density per unit volume is 8.0×10?3 nm?2 or more. A complex comprising: a material having a porous structure; and said catalyst. A membrane electrode assembly comprising: an anode; cathode; and an electrolyte membrane, wherein the cathode carries said catalyst on at least a surface of the cathode.
    Type: Application
    Filed: March 2, 2017
    Publication date: May 9, 2019
    Applicant: Japan Science and Technology Agency
    Inventors: Miho Yamauchi, Masaaki Sadakiyo, Sho Kitano, Shinichi Hata
  • Patent number: 9139489
    Abstract: Provided are a method of manufacturing an olefin having 2 to 4 carbon atoms including: reacting a catalyst with synthesis gas through a Fischer-Tropsch reaction, thereby obtaining the olefin having 2 to 4 carbon atoms, in which the catalyst is a catalyst obtained by reducing the iron ion and the cobalt ion in a dispersion liquid or a solution containing the iron ion, the cobalt ion and a dispersant that interacts with the iron ion and the cobalt ion, and a method of manufacturing propylene, which uses the above manufacturing method.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: September 22, 2015
    Assignees: SUMITOMO CHEMICAL COMPANY, LIMITED, Kyushu University, NATIONAL UNIVERSITY CORPORATION, NATIONAL UNIVERSITY CORPORATION OITA UNIVERSITY, NATIONAL UNIVERSITY CORPORATION UNIVERSITY OF TOYAMA
    Inventors: Miho Yamauchi, Katsutoshi Nagaoka, Katsutoshi Sato, Noritatsu Tsubaki, Akihiro Yuasa, Hideyuki Higashimura, Takeshi Ishiyama
  • Patent number: 8986514
    Abstract: Disclosed are: a catalyst which is capable of reducing and converting nitrate ions into ammonia without adding a hydrogen gas thereto; a method for synthesizing ammonia using the catalyst, wherein nitrate ions are reduced without adding a hydrogen gas thereto; and a method for decreasing nitrogen oxide in water by reducing nitrate ions contained in the water. Disclosed is a photocatalyst composition that is obtained by loading a photocatalyst, which is capable of photoreducing protons into a hydrogen gas, with CuPd alloy nanoparticles. The photocatalyst composition is used for the purpose of producing ammonia by photoreducing nitrogen that is coexistent with water and nitrogen oxide. The CuPd alloy nanoparticles are (1) CuPd alloy nanoparticles having a B2 type crystal structure and represented by CuxPd(1-x) (wherein 0.3?x?0.7), (2) CuPd alloy nanoparticles having a bcc type crystal structure and represented by CuxPd(1-x) (wherein 0.3<x<0.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: March 24, 2015
    Assignee: National University Corporation Hokkaido University
    Inventors: Miho Yamauchi, Ryu Abe
  • Publication number: 20140045955
    Abstract: Provided are a method of manufacturing an olefin having 2 to 4 carbon atoms including: reacting a catalyst with synthesis gas through a Fischer-Tropsch reaction, thereby obtaining the olefin having 2 to 4 carbon atoms, in which the catalyst is a catalyst obtained by reducing the iron ion and the cobalt ion in a dispersion liquid or a solution containing the iron ion, the cobalt ion and a dispersant that interacts with the iron ion and the cobalt ion, and a method of manufacturing propylene, which uses the above manufacturing method.
    Type: Application
    Filed: August 8, 2013
    Publication date: February 13, 2014
    Applicants: SUMITOMO CHEMICAL COMPANY , LIMITED, National University Corporation University of Toya ma, NATIONAL UNIVERSITY CORPORATION OITA UNIVERSITY, KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION
    Inventors: Miho YAMAUCHI, Katsutoshi NAGAOKA, Katsutoshi SATO, Noritatsu TSUBAKI, Akihiro YUASA, Hideyuki HIGASHIMURA, Takeshi ISHIYAMA
  • Publication number: 20120228120
    Abstract: Disclosed are: a catalyst which is capable of reducing and converting nitrate ions into ammonia without adding a hydrogen gas thereto; a method for synthesizing ammonia using the catalyst, wherein nitrate ions are reduced without adding a hydrogen gas thereto; and a method for decreasing nitrogen oxide in water by reducing nitrate ions contained in the water. Disclosed is a photocatalyst composition that is obtained by loading a photocatalyst, which is capable of photoreducing protons into a hydrogen gas, with CuPd alloy nanoparticles. The photocatalyst composition is used for the purpose of producing ammonia by photoreducing nitrogen that is coexistent with water and nitrogen oxide. The CuPd alloy nanoparticles are (1) CuPd alloy nanoparticles having a B2 type crystal structure and represented by CuxPd(1-x) (wherein 0.3<x<0.7), (2) CuPd alloy nanoparticles having a bcc type crystal structure and represented by CuxPd(1-x) (wherein 0.3<x<0.
    Type: Application
    Filed: September 3, 2010
    Publication date: September 13, 2012
    Applicant: NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY
    Inventors: Miho Yamauchi, Ryu Abe