Patents by Inventor Mikio Takezawa

Mikio Takezawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8475692
    Abstract: Nanofibers are manufactured while preventing explosions from occurring due to solvent evaporation. An effusing unit (201) which effuses solution (300) into a space, a first charging unit (202) which electrically charges the solution (300) by applying an electric charge to the solution (300), a guiding unit (206) which forms an air channel for guiding the manufactured nanofibers (301), a gas flow generating unit (203) which generates, inside the guiding unit (206), gas flow for transporting the nanofibers, a diffusing unit (240) which diffusing the nanofibers (301) guided by the guiding unit (206), a collecting apparatus which electrically attracts and collects the nanofibers (301), and a drawing unit (102) which draws the gas flow together with the evaporated component evaporated from the solution (300) are included.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: July 2, 2013
    Assignee: Panasonic Corporation
    Inventors: Hiroto Sumida, Takahiro Kurokawa, Kazunori Ishikawa, Yoshiaki Tominaga, Mikio Takezawa, Mitsuhiro Takahashi, Masahide Yokoyama
  • Patent number: 8383539
    Abstract: A carried material is carried only on a surface of nano-fibers. It includes a raw material liquid spray step that sprays raw material liquid, which is a raw material of nano-fibers, into a space, a raw material liquid electrically charging step, which applies an electric charge to the raw material liquid and makes the raw material liquid electrically charged, a nano-fiber manufacturing step that manufactures the nano-fibers by having the electrically charged and sprayed raw material liquid explode electrostatically, a carried material electrically charging step that electrically charges a carried material carried on the nano-fibers with a polarity opposite to a polarity of the electrically charged nano-fibers, and a mixing step that mixes the manufactured nano-fibers and the electrically charged carried material in a space.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: February 26, 2013
    Assignee: Panasonic Corporation
    Inventors: Hiroto Sumida, Takahiro Kurokawa, Kazunori Ishikawa, Yoshiaki Tominaga, Mikio Takezawa, Mitsuhiro Takahashi, Takatoshi Mitsushima
  • Patent number: 8186987
    Abstract: Provided is a nano-fiber manufacturing apparatus which manufactures nano-fibers by an electrostatic explosion, and has a low possibility of explosion even when a flammable solvent is used. The nano-fiber manufacturing apparatus (101) having an ejection unit (110) which ejects solution (200) that is raw material liquid for nano-fibers (200) to a manufacturing space in which the nano-fibers (200) are manufactured by an electrostatic explosion of the solution (200), and a charging unit which charges the solution (200). The nano-fiber manufacturing apparatus (101) includes a gas supply source (103) which supplies safety gas to change an atmosphere of the manufacturing space, in which the solution (200) is ejected, into a low oxygen atmosphere, and a partition (102) which maintains the manufacturing space at a lower oxygen atmosphere than an atmosphere of an outside space of the partition (102).
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: May 29, 2012
    Assignee: Panasonic Corporation
    Inventors: Hiroto Sumida, Takahiro Kurokawa, Kazunori Ishikawa, Mitsuhiro Takahashi, Mikio Takezawa, Yoshiaki Tominaga
  • Patent number: 8163227
    Abstract: A nanofiber spinning method and device for producing a high strength and uniform yarn made of nanofibers. The device includes: a nanofiber producing unit (2) which produces nanofibers (11) by extruding polymer solution, prepared by dissolving polymeric substances in a solvent, through small holes (7) and charging the polymer solution, and by allowing the polymer solution to be stretched by an electrostatic explosion, and which allows the nanofibers to travel in a single direction; a collecting electrode unit (3) to which an electric potential different from that of the charged polymer solution is applied, and which attracts the produced nanofibers (11) while simultaneously rotating and twisting the nanofibers, and gathers them for forming a yarn (20) made of the nanofibers (11); and a collecting unit (5) which collects the yarn (20) passed through the center of the collecting electrode unit (3).
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: April 24, 2012
    Assignee: Panasonic Corporation
    Inventors: Hiroto Sumida, Takahiro Kurokawa, Kazunori Ishikawa, Mitsuhiro Takahashi, Mikio Takezawa, Yoshiaki Tominaga
  • Publication number: 20120091606
    Abstract: A method for manufacturing a fine polymer including: generating superheated steam by a superheated steam generating unit (101); adjusting the pressure of the generated superheated steam by a pressure adjusting unit (102); receiving a polymer by a reception unit (103); heating the received polymer to a predetermined temperature by a heating unit (104); discharging the heated polymer through a first discharge port (111); and discharging the superheated steam through a second discharge port (121) at the same time as the time when the heated polymer is discharged. Here, the second discharge port (121) surrounds the first discharge port (111), and the first discharge port (111) and the second discharge port (121) face the same direction.
    Type: Application
    Filed: December 27, 2011
    Publication date: April 19, 2012
    Inventors: Mitsuhiro TAKAHASHI, Mikio Takezawa, Yoshiaki Tominaga, Takahiro Kurokawa, Hiroto Sumida, Kazunori Ishikawa
  • Patent number: 8110136
    Abstract: Nanofibers are formed from a polymer material by rotating a conductive rotating container having a plurality of small holes while supplying a polymer solution formed by dissolving a polymer material in a solvent into the rotating container, charging the polymer solution discharged from the small holes of the rotating container by charging means, and drawing the discharged filamentous polymer solution by centrifugal force and an electrostatic explosion resulting from evaporation of the solvent. The nanofibers from this production step are oriented and made to flow from one side toward the other side in a shaft center direction of the rotating container by a reflecting electrode and/or blowing means, or those nanofibers are deposited, to produce a polymer web. The nanofibers and the polymer web using these nanofibers can be produced uniformly by a simple configuration with good productivity.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: February 7, 2012
    Assignee: Panasonic Corporation
    Inventors: Mitsuhiro Takahashi, Mikio Takezawa, Yoshiaki Tominaga, Takahiro Kurokawa, Kazunori Ishikawa, Hiroto Sumida
  • Publication number: 20110059261
    Abstract: Nanofibers are manufactured while preventing explosions from occurring due to solvent evaporation. An effusing unit (201) which effuses solution (300) into a space, a first charging unit (202) which electrically charges the solution (300) by applying an electric charge to the solution (300), a guiding unit (206) which forms an air channel for guiding the manufactured nanofibers (301), a gas flow generating unit (203) which generates, inside the guiding unit (206), gas flow for transporting the nanofibers, a diffusing unit (240) which diffusing the nanofibers (301) guided by the guiding unit (206), a collecting apparatus which electrically attracts and collects the nanofibers (301), and a drawing unit (102) which draws the gas flow together with the evaporated component evaporated from the solution (300) are included.
    Type: Application
    Filed: March 23, 2009
    Publication date: March 10, 2011
    Inventors: Hiroto Sumida, Takahiro Kurokawa, Kazunori Ishikawa, Yoshiaki Tominaga, Mikio Takezawa, Mitsuhiro Takahashi, Masahide Yokoyama
  • Publication number: 20110014542
    Abstract: A carried material is carried only on a surface of nano-fibers. It includes a raw material liquid spray step that sprays raw material liquid (300), which is a raw material of nano-fibers (301), into a space, a raw material liquid electrically charging step, which applies an electric charge to the raw material liquid (300) and makes the raw material liquid electrically charged, a nano-fiber manufacturing step that manufactures the nano-fibers (301) by having the electrically'charged and sprayed raw material liquid (300) explode electrostatically, a carried material electrically charging step that electrically charges a carried material (302) carried on the nano-fibers (301) with a polarity opposite to a polarity of the electrically charged nano-fibers (301), and a mixing step that mixes the said manufactured nano-fibers (301) and the electrically charged carried material (302) in a space.
    Type: Application
    Filed: March 9, 2009
    Publication date: January 20, 2011
    Applicant: PANASONIC CORPORATION
    Inventors: Hiroto Sumida, Takahiro Kurokawa, Kazunori Ishikawa, Yoshiaki Tominaga, Mikio Takezawa, Mitsuhiro Takahashi, Takatoshi Mitsushima
  • Publication number: 20100187729
    Abstract: A method for manufacturing a fine polymer including: generating superheated steam by a superheated steam generating unit (101); adjusting the pressure of the generated superheated steam by a pressure adjusting unit (102); receiving a polymer by a reception unit (103); heating the received polymer to a predetermined temperature by a heating unit (104); discharging the heated polymer through a first discharge port (111); and discharging the superheated steam through a second discharge port (121) at the same time as the time when the heated polymer is discharged. Here, the second discharge port (121) surrounds the first discharge port (111), and the first discharge port (111) and the second discharge port (121) face the same direction.
    Type: Application
    Filed: July 4, 2008
    Publication date: July 29, 2010
    Inventors: Mitsuhiro Takahashi, Mikio Takezawa, Yoshiaki Tominaga, Takahiro Kurokawa, Hiroto Sumida, Kazunori Ishikawa
  • Publication number: 20100148405
    Abstract: An object of the present invention is to stabilize the properties of nanofibers produced. Solution prepared by dissolving a polymeric substance in a solvent is supplied into a conductive ejection container having a plurality of ejection holes. The ejection container is rotated and electrostatic explosions of the solution discharged through the ejection holes are caused so that nanofibers are produced. In the above method for producing nanofibers, in the case where the amount of the solution contained in the ejection container exceeds a predetermined amount, the amount of the solution exceeding the predetermined amount overflow the ejection container. The overflowed solution is collected and resupplied to the ejection container.
    Type: Application
    Filed: May 12, 2008
    Publication date: June 17, 2010
    Inventors: Hiroto Sumida, Takahiro Kurokawa, Kazunori Ishikawa, Mitsuhiro Takahashi, Mikio Takezawa, Yoshiaki Tominaga
  • Publication number: 20100148404
    Abstract: Provided is a nanofiber spinning method and device for producing a high strength and uniform yarn made of nanofibers with high productivity and at a low cost. The device includes: a nanofiber producing unit (2) which produces nanofibers (11) by extruding polymer solution, prepared by dissolving polymeric substances in a solvent, through small holes (7) and charging the polymer solution, and by allowing the polymer solution to be stretched by an electrostatic explosion, and which allows the nanofibers to travel in a single direction; a collecting electrode unit (3) to which an electric potential different from that of the charged polymer solution is applied, and which attracts the produced nanofibers (11) while simultaneously rotating and twisting the nanofibers, and gathers them for forming a yarn (20) made of the nanofibers (11); and a collecting unit (5) which collects the yarn (20) passed through the center of the collecting electrode unit (3).
    Type: Application
    Filed: May 1, 2008
    Publication date: June 17, 2010
    Inventors: Hiroto Smida, Takahiro Kurokawa, Kazunori Ishikawa, Mitsurhiro Takahashi, Mikio Takezawa, Yoshiaki Tominaga
  • Publication number: 20100092687
    Abstract: Provided is a nano-fiber manufacturing apparatus which manufactures nano-fibers by an electrostatic explosion, and has a low possibility of explosion even when a flammable solvent is used. The nano-fiber manufacturing apparatus (101) having an ejection unit (110) which ejects solution (200) that is raw material liquid for nano-fibers (200) to a manufacturing space in which the nano-fibers (200) are manufactured by an electrostatic explosion of the solution (200), and a charging unit which charges the solution (200). The nano-fiber manufacturing apparatus (101) includes a gas supply source (103) which supplies safety gas to change an atmosphere of the manufacturing space, in which the solution (200) is ejected, into a low oxygen atmosphere, and a partition (102) which maintains the manufacturing space at a lower oxygen atmosphere than an atmosphere of an outside space of the partition (102).
    Type: Application
    Filed: February 19, 2008
    Publication date: April 15, 2010
    Inventors: Hiroto Sumida, Takahiro Kurokawa, Kazunori Ishikawa, Mitsushiro Takahasi, Mikio Takezawa, Yoshiaki Tominaga
  • Publication number: 20100072674
    Abstract: Nanofibers are formed from a polymer material by rotating a conductive rotating container having a plurality of small holes while supplying a polymer solution formed by dissolving a polymer material in a solvent into the rotating container, charging the polymer solution discharged from the small holes of the rotating container by charging means, and drawing the discharged filamentous polymer solution by centrifugal force and an electrostatic explosion resulting from evaporation of the solvent. The nanofibers from this production step are oriented and made to flow from one side toward the other side in a shaft center direction of the rotating container by a reflecting electrode and/or blowing means, or those nanofibers are deposited, to produce a polymer web. The nanofibers and the polymer web using these nanofibers can be produced uniformly by a simple configuration with good productivity.
    Type: Application
    Filed: November 20, 2007
    Publication date: March 25, 2010
    Applicant: PANASONIC CORPORATION
    Inventors: Mitsuhiro Takahashi, Mikio Takezawa, Yoshiaki Tominaga, Takahiro Kurokawa, Kazunori Ishikawa, Hiroto Sumida
  • Patent number: 6840969
    Abstract: An electrolyte membrane-gasket assembly for a fuel cell, including a polymer electrolyte membrane and a gasket, made of a seal material, covering the peripheral portion of the electrolyte membrane, in which the electrolyte membrane has a sequence of a plurality of through-holes in the peripheral portion, and a portion of the gasket covering one surface of the electrolyte membrane and a portion covering the other surface are connected to each other through the through-holes of the electrolyte membrane. This assembly provides a polymer electrolyte fuel cell free from gas cross leakage caused by a detachment of the gasket from the polymer electrolyte membrane. It is preferable to further include catalyst layers carried on both surfaces of the polymer electrolyte membrane, respectively, and protective films covering, respectively, sections spanning from the peripheral portion of each of the catalyst layers to the peripheral portion of the polymer electrolyte membrane.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: January 11, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Susumu Kobayashi, Masato Hosaka, Kazuhito Hatoh, Hikaru Murakami, Mikio Takezawa, Takayuki Onishi
  • Patent number: 6790552
    Abstract: A polymer electrolyte fuel cell in which neither cross leakage nor outward leakage occurs with the application of low clamping pressures. The polymer electrolyte fuel cell a membrane electrode assembly (MEA) including a polymer electrolyte membrane, a gasket covering the periphery of the electrolyte membrane, and an anode and cathode attached to the electrolyte membrane; and conductive separator plates sandwiching the MEA therebetween. The gasket has seal ribs surrounding each of the manifold apertures, the anode and the cathode, as well as seal ribs formed on both sides of each of gas passages connecting the fuel gas manifold apertures with the anode and gas passages connecting the oxidant gas manifold apertures with the cathode. These seal ribs, except for in the gas passages, are pressed against the separator plates by clamping pressure of the cell stack to form gas sealing sections.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: September 14, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Susumu Kobayashi, Masato Hosaka, Kazuhito Hatoh, Hikaru Murakami, Mikio Takezawa, Takayuki Onishi
  • Publication number: 20030091885
    Abstract: The present invention provides an electrolyte membrane-gasket assembly for a fuel cell, including a polymer electrolyte membrane and a gasket, made of a seal material, covering the peripheral portion of the electrolyte membrane, in which the electrolyte membrane has a sequence of a plurality of through-holes in the peripheral portion, and a portion of the gasket covering one surface of the electrolyte membrane and a portion covering the other surface are connected to each other through the through-holes of the electrolyte membrane. This assembly provides a polymer electrolyte fuel cell that is free from gas cross leakage caused by a detachment of the gasket from the polymer electrolyte membrane. It is preferable to further include catalyst layers carried on both surfaces of the polymer electrolyte membrane, respectively, and protective films covering, respectively, sections spanning from the peripheral portion of each of the catalyst layers to the peripheral portion of the polymer electrolyte membrane.
    Type: Application
    Filed: October 1, 2002
    Publication date: May 15, 2003
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Susumu Kobayashi, Masato Hosaka, Kazuhito Hatoh, Hikaru Murakami, Mikio Takezawa, Takayuki Onishi
  • Publication number: 20030087142
    Abstract: The present invention provides a polymer electrolyte fuel cell in which neither cross leakage nor outward leakage occurs with the application of low clamping pressures. The polymer electrolyte fuel cell comprises a unit cell, the unit cell comprising: a membrane electrode assembly (MEA) comprising a polymer electrolyte membrane, a gasket covering the periphery of the electrolyte membrane, an anode and a cathode attached to the electrolyte membrane; and conductive separator plates sandwiching the MEA therebetween. The gasket and the separator plates have a pair of manifold apertures for each of fuel gas, oxidant gas and cooling water. The gasket comprises dummy ribs surrounding each of the manifold apertures, and the separator plates have grooves into which each of the dummy ribs is fitted loosely such that there is a clearance therebetween.
    Type: Application
    Filed: October 15, 2002
    Publication date: May 8, 2003
    Inventors: Susumu Kobayashi, Masato Hosaka, Kazuhito Hatoh, Hikaru Murakami, Mikio Takezawa, Takayuki Onishi
  • Publication number: 20020197523
    Abstract: A method of producing a fuel cell comprising the steps of: (A) molding a separator having a gas flow channel or a cooling water flow channel by injection molding process having a step of injecting a mixture comprising one or more conductive inorganic materials and one or more resins into a mold; (B) producing an assembly comprising an electrolyte and a pair of electrodes sandwiching the electrolyte; and (C) combining the separator with the assembly to produce a fuel cell.
    Type: Application
    Filed: June 11, 2002
    Publication date: December 26, 2002
    Applicant: Matsushita Electric Industrial Co., Ltd
    Inventors: Hideo Ohara, Kazuhito Hatoh, Katsumi Tomita, Nobuhiro Hase, Hiroki Kusakabe, Tatsuto Yamazaki, Masayo Sugou, Shinsuke Takeguchi, Susumu Kobayashi, Hikaru Murakami, Mikio Takezawa, Hiroshi Kobayashi, Takayuki Onishi, Hiroaki Matsuoka