Patents by Inventor Min-Hung Hu

Min-Hung Hu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230216401
    Abstract: A multi-stage amplifier circuit includes: a front stage amplification circuit, for generating a front stage amplification signal according to a difference between a primary reference signal and a primary feedback signal; an output adjustment circuit, for generating a driving signal according to the front stage amplification signal; and an output transistor, controlled by the driving signal to generate an output signal. The output adjustment circuit includes: an adjustment transistor biased by a differential current of the front stage amplification signal; and an impedance adjustment device biased by the differential current. A resistance of the impedance adjustment device is determined by a difference between an adjustment feedback signal and an adjustment reference signal. The driving signal is determined by a product of a resistance of the impedance adjustment device multiplied by the differential current of the front stage amplification signal, and a drain-source voltage of the adjustment transistor.
    Type: Application
    Filed: September 21, 2022
    Publication date: July 6, 2023
    Inventor: Min-Hung Hu
  • Publication number: 20230205247
    Abstract: An impedance-tracking circuit includes a voltage divider, a first dynamic resistor, and a first amplifier. The voltage divider divides a voltage difference between a first voltage and a second voltage to generate a divided voltage. The first dynamic resistor has a first resistance value and is coupled between the first voltage and a third voltage. The first dynamic resistor adjusts the first resistance value according to a first control signal. The first amplifier compares the divided voltage with the third voltage to generate the first control signal.
    Type: Application
    Filed: December 22, 2022
    Publication date: June 29, 2023
    Inventor: Min-Hung HU
  • Patent number: 11496105
    Abstract: A multi-stage amplifier circuit includes a pre-stage amplifier circuit and a floating control circuit. The pre-stage amplifier circuit amplifies a voltage difference between its input terminals, to generate plural pre-stage transconductance currents flowing through corresponding plural pre-stage transconductance nodes. The floating control circuit includes: a floating reference transistor configured as a source follower and a floating amplifier. The floating amplifier and the floating reference transistor are coupled to form feedback control and to generate an upper driving signal and a lower driving signal according to a floating reference level in the floating control circuit. The upper driving signal is higher than the lower driving signal with a predetermined voltage difference. The floating control circuit is electrically connected to the plural pre-stage transconductance nodes and is floating in common mode relative to the pre-stage transconductance nodes.
    Type: Grant
    Filed: October 1, 2021
    Date of Patent: November 8, 2022
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventor: Min-Hung Hu
  • Publication number: 20220190788
    Abstract: A parallel input and dynamic cascaded OTA (operational transconductance amplifier includes: plural sub-OTAs which generate corresponding plural transconductance output currents according to corresponding plural differential input voltages; and at least one cascading capacitor which is cascaded between a first sub-OTA and a second sub-OTA. A second transconductance output current generated by the second sub-OTA is coupled through the cascading capacitor to generate a transient bias current on a common mode bias node of the first sub-OTA, thus providing the transient bias current to a differential pair circuit of the first sub-OTA in a case when a transient variation occurs in the differential input voltage corresponding to the first sub-OTA, so that a loop bandwidth and a response speed during a transient state are enhanced.
    Type: Application
    Filed: December 15, 2021
    Publication date: June 16, 2022
    Inventor: Min-Hung Hu
  • Patent number: 11340643
    Abstract: A linear regulator circuit having fast transient response includes an error amplifier (EA) circuit and an output stage circuit. The EA circuit amplifies a difference between a feedback signal and a reference signal to generate an error amplified signal. The output stage circuit includes at least one output power switch which is controlled by the error amplified signal to generate an output signal at an output node. The EA circuit includes at least one pre-stage amplifier circuit which includes a current source circuit, a differential input circuit, a first, a second and a third current mirror circuits and at least one feedback capacitor. One differential transistor of the differential input circuit, the first and the second current mirror circuit form a positive potential feedback (PPFB) loop. The feedback capacitor is coupled between the output node and at least one inverting node at the PPFB loop.
    Type: Grant
    Filed: September 27, 2020
    Date of Patent: May 24, 2022
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventor: Min-Hung Hu
  • Publication number: 20220116002
    Abstract: A multi-stage amplifier circuit includes a pre-stage amplifier circuit and a floating control circuit. The pre-stage amplifier circuit amplifies a voltage difference between its input terminals, to generate plural pre-stage transconductance currents flowing through corresponding plural pre-stage transconductance nodes. The floating control circuit includes: a floating reference transistor configured as a source follower and a floating amplifier. The floating amplifier and the floating reference transistor are coupled to form feedback control and to generate an upper driving signal and a lower driving signal according to a floating reference level in the floating control circuit. The upper driving signal is higher than the lower driving signal with a predetermined voltage difference. The floating control circuit is electrically connected to the plural pre-stage transconductance nodes and is floating in common mode relative to the pre-stage transconductance nodes.
    Type: Application
    Filed: October 1, 2021
    Publication date: April 14, 2022
    Inventor: Min-Hung Hu
  • Patent number: 11146217
    Abstract: A signal amplifier circuit having high power supply rejection ratio includes: a pre-amplifier which generates a driving signal at a driving control node; and a driving circuit which converts an input power to an output power. The driving circuit includes: a driving transistor, having a first terminal coupled to the input power and a second terminal coupled to the output power; and a power rejection circuit which includes a noise selection circuit. When the driving transistor operates in its linear region, the power rejection circuit senses an AC component of a power noise of the input power to generate an operation noise signal. The power rejection circuit generates the power rejection signal in AC form according to the operation noise signal to reject the power noise so as to increase the power supply rejection ratio.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: October 12, 2021
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventor: Min-Hung Hu
  • Publication number: 20210191439
    Abstract: A linear regulator circuit having fast transient response includes an error amplifier (EA) circuit and an output stage circuit. The EA circuit amplifies a difference between a feedback signal and a reference signal to generate an error amplified signal. The output stage circuit includes at least one output power switch which is controlled by the error amplified signal to generate an output signal at an output node. The EA circuit includes at least one pre-stage amplifier circuit which includes a current source circuit, a differential input circuit, a first, a second and a third current mirror circuits and at least one feedback capacitor. One differential transistor of the differential input circuit, the first and the second current mirror circuit form a positive potential feedback (PPFB) loop. The feedback capacitor is coupled between the output node and at least one inverting node at the PPFB loop.
    Type: Application
    Filed: September 27, 2020
    Publication date: June 24, 2021
    Inventor: Min-Hung Hu
  • Publication number: 20210028747
    Abstract: A signal amplifier circuit having high power supply rejection ratio includes: a pre-amplifier which generates a driving signal at a driving control node; and a driving circuit which converts an input power to an output power. The driving circuit includes: a driving transistor, having a first terminal coupled to the input power and a second terminal coupled to the output power; and a power rejection circuit which includes a noise selection circuit. When the driving transistor operates in its linear region, the power rejection circuit senses an AC component of a power noise of the input power to generate an operation noise signal. The power rejection circuit generates the power rejection signal in AC form according to the operation noise signal to reject the power noise so as to increase the power supply rejection ratio.
    Type: Application
    Filed: July 8, 2020
    Publication date: January 28, 2021
    Inventor: Min-Hung Hu
  • Patent number: 10473531
    Abstract: A temperature sensor includes a plurality of temperature coefficient voltage generators, one or more converters and at least one variable voltage or current source. The temperature coefficient voltage generators are used for generating multiple temperature coefficient voltages. The converters, coupled to the temperature coefficient voltage generators, are used for converting the temperature coefficient voltages to digital values. The at least one variable voltage or current source, each coupled to at least one of the temperature coefficient voltage generators, includes a first variable voltage or current source for outputting a first voltage or current in a first time period, and outputting a second voltage or current in a second time period, wherein the second voltage or current is different from the first voltage or current such that there exists a shift between a first voltage-temperature curve in the first time period and a second voltage-temperature curve in the second time period.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: November 12, 2019
    Assignee: NOVATEK Microelectronics Corp.
    Inventors: Ying-Chieh Yen, Min-Hung Hu, Yuan-Te Chen, Cun-Kai Zhao, Chien-Chuan Huang
  • Publication number: 20190072435
    Abstract: A temperature sensor includes a plurality of temperature coefficient voltage generators, one or more converters and at least one variable voltage or current source. The temperature coefficient voltage generators are used for generating multiple temperature coefficient voltages. The converters, coupled to the temperature coefficient voltage generators, are used for converting the temperature coefficient voltages to digital values. The at least one variable voltage or current source, each coupled to at least one of the temperature coefficient voltage generators, includes a first variable voltage or current source for outputting a first voltage or current in a first time period, and outputting a second voltage or current in a second time period, wherein the second voltage or current is different from the first voltage or current such that there exists a shift between a first voltage-temperature curve in the first time period and a second voltage-temperature curve in the second time period.
    Type: Application
    Filed: September 5, 2017
    Publication date: March 7, 2019
    Inventors: Ying-Chieh Yen, Min-Hung Hu, Yuan-Te Chen, Cun-Kai Zhao, Chien-Chuan Huang
  • Patent number: 10175267
    Abstract: A current measurement circuit for measuring a current consumption of a circuit system includes a plurality of current measurement units and a current-to-voltage (I-V) converter. Each of the current measurement units includes an impedance unit and a voltage-to-current (V-I) converter. The impedance unit includes a first terminal and a second terminal. The V-I converter, coupled to the first terminal and the second terminal of the impedance unit, includes an output terminal and an operational transconductance amplifier (OTA). The plurality of output terminals of the plurality of V-I converters of the plurality of current measurement units are coupled to a first node. The I-V converter is coupled to the first node.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: January 8, 2019
    Assignee: NOVATEK Microelectronics Corp.
    Inventors: Min-Hung Hu, Hsi-Ming Chen, Chao-Wei Su, Ying-Chieh Yen
  • Patent number: 10038417
    Abstract: A current-bootstrap comparator includes a receiving unit, a first current generation unit and a second current generation unit. The receiving unit receives a load voltage signal, a low threshold voltage and a high threshold voltage. The first current generation unit generates a first current. The second current generation unit generates a second current having a magnitude substantially same as a magnitude of the first current and a direction reverse to the first current. The first current and the second current are supplied to a next-stage circuit as a source current and a corresponding sink current, respectively, when the level of the load voltage signal is higher than the high threshold voltage or lower than the low threshold voltage. The magnitudes of the first current and the second current substantially equal zero when the level of the load voltage signal is between the high threshold voltage and the low threshold voltage.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: July 31, 2018
    Assignee: NOVATEK Microelectronics Corp.
    Inventors: Min-Hung Hu, Ping-Lin Liu, Pin-Han Su
  • Publication number: 20180188292
    Abstract: A current measurement circuit for measuring a current consumption of a circuit system includes a plurality of current measurement units and a current-to-voltage (I-V) converter. Each of the current measurement units includes an impedance unit and a voltage-to-current (V-I) converter. The impedance unit includes a first terminal and a second terminal. The V-I converter, coupled to the first terminal and the second terminal of the impedance unit, includes an output terminal and an operational transconductance amplifier (OTA). The plurality of output terminals of the plurality of V-I converters of the plurality of current measurement units are coupled to a first node. The I-V converter is coupled to the first node.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 5, 2018
    Inventors: Min-Hung Hu, Hsi-Ming Chen, Chao-Wei Su, Ying-Chieh Yen
  • Patent number: 9971370
    Abstract: A voltage regulator including a voltage amplifier, a first output-stage, an AC-pass filter, a current amplifier, a second output-stage and a gain circuit is provided. Output terminals of the first and the second output-stages jointly provide the output voltage of the voltage regulator. Two input terminals of the voltage amplifier respectively receive a reference voltage and the output voltage. An input terminal of the first output-stage is coupled to an output terminal of the voltage amplifier. Two input terminals of the current amplifier respectively receive a reference current and the AC component of the output voltage. An input terminal of the second output-stage is coupled to an output terminal of the current amplifier. An input terminal of the gain circuit is coupled to the output terminal of the voltage amplifier. An output terminal of the gain circuit is coupled to the input terminal of the second output-stage.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: May 15, 2018
    Assignee: Novatek Microelectronics Corp.
    Inventors: Min-Hung Hu, Chiu-Huang Huang, Chen-Tsung Wu, Juin-Wei Huang, Pin-Han Su
  • Publication number: 20170373653
    Abstract: A current-bootstrap comparator includes a receiving unit, a first current generation unit and a second current generation unit. The receiving unit receives a load voltage signal, a low threshold voltage and a high threshold voltage. The first current generation unit generates a first current. The second current generation unit generates a second current having a magnitude substantially same as a magnitude of the first current and a direction reverse to the first current. The first current and the second current are supplied to a next-stage circuit as a source current and a corresponding sink current, respectively, when the level of the load voltage signal is higher than the high threshold voltage or lower than the low threshold voltage. The magnitudes of the first current and the second current substantially equal zero when the level of the load voltage signal is between the high threshold voltage and the low threshold voltage.
    Type: Application
    Filed: June 12, 2017
    Publication date: December 28, 2017
    Inventors: Min-Hung Hu, Ping-Lin Liu, Pin-Han Su
  • Publication number: 20170108883
    Abstract: A voltage regulator including a voltage amplifier, a first output-stage, an AC-pass filter, a current amplifier, a second output-stage and a gain circuit is provided. Output terminals of the first and the second output-stages jointly provide the output voltage of the voltage regulator. Two input terminals of the voltage amplifier respectively receive a reference voltage and the output voltage. An input terminal of the first output-stage is coupled to an output terminal of the voltage amplifier. Two input terminals of the current amplifier respectively receive a reference current and the AC component of the output voltage. An input terminal of the second output-stage is coupled to an output terminal of the current amplifier. An input terminal of the gain circuit is coupled to the output terminal of the voltage amplifier. An output terminal of the gain circuit is coupled to the input terminal of the second output-stage.
    Type: Application
    Filed: October 19, 2015
    Publication date: April 20, 2017
    Inventors: Min-Hung Hu, Chiu-Huang Huang, Chen-Tsung Wu, Juin-Wei Huang, Pin-Han Su
  • Patent number: 9494959
    Abstract: A current source for quickly adjusting an output current includes a constant current generation module, coupled to a control node, for generating a predefined current flowing through the control node in order to determine a voltage of the control node; a capacitor, coupled to an output terminal of the current source; a current variation detection module, coupled between the control node and the capacitor, for generating a variation on the voltage of the control node via the capacitor when the output terminal of the current source receives an instant current variation; and a trans-conductance amplifier, coupled between the control node and the output terminal, for changing a magnitude of the output current of the output terminal when the variation on the voltage of the control node is generated.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: November 15, 2016
    Assignee: NOVATEK Microelectronics Corp.
    Inventors: Min-Hung Hu, Chiu-Huang Huang, Chen-Tsung Wu, Chun-Wei Huang, Pin-Han Su
  • Patent number: 9471075
    Abstract: A compensation module for a voltage regulation device having a gain stage, an output stage and a miller compensation module includes a low-output-impedance non-inverting amplifier unit coupled to a gain output of the gain stage and an output-stage input of the output stage.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: October 18, 2016
    Assignee: NOVATEK Microelectronics Corp.
    Inventors: Min-Hung Hu, Pin-Han Su, Chun-Wei Huang, Chen-Tsung Wu, Chiu-Huang Huang
  • Patent number: 9459647
    Abstract: The present invention provides a bandgap reference circuit. The bandgap reference circuit includes a first bipolar junction transistor, a first resistor, for generating a proportional to absolute temperature current, a second resistor, for generating a complementary to absolute temperature current, a first operational amplifier, coupled with the first bipolar junction transistor and the first resistor, a second operational amplifier, coupled with the first bipolar junction transistor and the second resistor, and a zero temperature correlated current generator, for summing the proportional to absolute temperature current and the complementary to absolute temperature current, to generate a zero temperature correlated current.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: October 4, 2016
    Assignee: NOVATEK Microelectronics Corp.
    Inventors: Min-Hung Hu, Zhen-Guo Ding, Chen-Tsung Wu