Patents by Inventor Min Ah Seo

Min Ah Seo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10555692
    Abstract: Disclosed herein are a method and a device for sensing sugars, using terahertz electromagnetic waves. By the method, even a trace amount of sugars in a liquid state can be accurately discriminated and sensed, with high sensitivity and selectivity, using a sensing chip that works in a terahertz electromagnetic wave band. Using the method, sugars even at low concentrations can be accurately analyzed with high sensitivity and selectivity in which terahertz electromagnetic waves are irradiated onto sugars through a sensing chip having a meta unit in which a pattern is formed to amplify a frequency corresponding to an absorption frequency of a sugar of interest.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: February 11, 2020
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Min-Ah Seo, Dong-Kyu Lee, Jae-Hun Kim, Chul-Ki Kim, Taik-Jin Lee, Young-Min Jhon
  • Patent number: 10130254
    Abstract: Provided is a cell-level retinal disease detection apparatus including a light imaging means configured to emit light to an eyeball and a light processing means which receives light reflected by the eyeball and processes and compensates light for an astigmatism aberration thereof which occurs at the eyeball to compensate. Here, the light processing means includes a wavefront sensor which senses the astigmatism aberration of the reflected light which occurs due to the eyeball and a light compensation mirror which compensates the light based on the sensed astigmatism aberration, and compensates for a difference in the astigmatism aberration to detect a disease of a retina of the eyeball.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: November 20, 2018
    Assignee: Korea Institute of Science and Technology
    Inventors: Jae Hun Kim, Seok Hwan Kim, Ju Yeong Oh, Byeong Ho Park, Hyo Suk Kim, Min Ah Seo, Chul Ki Kim, Taik Jin Lee, Deok Ha Woo, Seok Lee, Young Min Jhon
  • Publication number: 20180078132
    Abstract: Provided is a cell-level retinal disease detection apparatus including a light imaging means configured to emit light to an eyeball and a light processing means which receives light reflected by the eyeball and processes and compensates light for an astigmatism aberration thereof which occurs at the eyeball to compensate. Here, the light processing means includes a wavefront sensor which senses the astigmatism aberration of the reflected light which occurs due to the eyeball and a light compensation mirror which compensates the light based on the sensed astigmatism aberration, and compensates for a difference in the astigmatism aberration to detect a disease of a retina of the eyeball.
    Type: Application
    Filed: March 29, 2017
    Publication date: March 22, 2018
    Applicant: Korea Institute of Science and Technology
    Inventors: Jae Hun KIM, Seok Hwan KIM, Ju Yeong OH, Byeong Ho PARK, Hyo Suk KIM, Min Ah SEO, Chul Ki KIM, Taik Jin LEE, Deok Ha WOO, Seok LEE, Young Min JHON
  • Patent number: 9899115
    Abstract: Disclosed is a terahertz trapping device including a substrate, and a film disposed on the substrate, wherein the film has a slot in a particular shape patterned to be engraved or a structure in a particular shape patterned by embossing the film to control motion of a particle using terahertz electromagnetic waves.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: February 20, 2018
    Assignee: Korea Institute of Science and Technology
    Inventors: Min Ah Seo, Dong Kyu Lee, Geun Chang Choi, Chul Ki Kim, Jae Hun Kim, Taik Jin Lee, Young Min Jhon
  • Patent number: 9844125
    Abstract: Provided is an extreme ultra-violet (EUV) beam generation apparatus using multi-gas cell modules in which a gas is prevented from directly flowing into a vacuum chamber by adding an auxiliary gas cell serving as a buffer chamber to a main gas cell, a diffusion rate of the gas is decreased, a high vacuum state is maintained, and a higher power EUV beam is continuously generated.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: December 12, 2017
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Young Min Jhon, Yong Soo Kim, Joon Mo Ahn, Min Ah Seo, Jae Hun Kim, Min Chul Park, Young Tae Byun, Chul Ki Kim, Seok Lee, Deok Ha Woo
  • Patent number: 9835553
    Abstract: Disclosed herein are a method and device for sensing pesticide residues, using terahertz electromagnetic waves. By the method, even a trace amount of pesticide residues on objects such as fruits can be accurately discriminated and sensed, with high sensitivity and selectivity, using a sensing chip that works in a terahertz electromagnetic wave band. Using the method, pesticide residues even at low concentrations can be accurately analyzed with high sensitivity and selectivity in which terahertz electromagnetic waves are irradiated onto pesticide residues through a sensing chip having a meta unit in which a pattern is formed to amplify a frequency corresponding to an absorption frequency of a pesticide residue of interest.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: December 5, 2017
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Min-Ah Seo, Dong-Kyu Lee, Chul-Ki Kim, Taik-Jin Lee, Jae-Hun Kim, Young-Min Jhon
  • Patent number: 9831452
    Abstract: A method for forming a PN junction in graphene includes: forming a graphene layer, and forming a DNA molecule layer on a partial region of the graphene layer, the DNA molecule layer having a nucleotide sequence structure designed to provide the graphene layer with a predetermined doping property upon adsorption on the graphene layer. The DNA molecule has a nucleotide sequence structure designed for doping of graphene so that doped graphene has a specific semiconductor property. The DNA molecule is coated on the surface of the graphene layer of which the partial region is exposed by micro patterning, and thereby, PN junctions of various structures may be formed by a region coated with the DNA molecule and a non-coated region in the graphene layer.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: November 28, 2017
    Assignee: Korea Institute of Science and Technology
    Inventors: Chulki Kim, Yeong Jun Kim, Young Mo Jung, Seong Chan Jun, Taikjin Lee, Seok Lee, Young Tae Byun, Deok Ha Woo, Sun Ho Kim, Min Ah Seo, Jae Hun Kim, Jong Chang Yi
  • Patent number: 9825421
    Abstract: Provided is a single pulse laser apparatus. The apparatus including a resonator having a first mirror, a second mirror, a gain medium, and electro-optic modulators (EOMs) which perform each mode-locking and Q-switching, the apparatus includes a photodiode which measures laser light that oscillates from the resonator, a synchronizer which converts an electrical signal generated by measuring the laser light into a transistor-transistor logic (TTL) signal, a delay unit which sets a latency determined in order to synchronize a mode-locked pulse with a Q-switched pulse to the TTL signal, and outputs a trigger TTL signal according to the latency, and a Q-driver which inputs the trigger TTL signal to the EOM which performs Q-switching, and causes the EOM to operates.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: November 21, 2017
    Assignee: Korea Institute of Science and Technology
    Inventors: Young Min Jhon, Joon Mo Ahn, Seok Lee, Jae Hun Kim, Min Ah Seo, Chul Ki Kim, Taik Jin Lee, Deok Ha Woo, Min Chul Park
  • Publication number: 20170324212
    Abstract: Disclosed herein is a single pulse laser apparatus that includes: a resonator having a first mirror, a second mirror, a gain medium, an electro-optic modulator (EOM) configured to perform single pulse switching, and an acousto-optic modulator (AOM) configured to perform mode-locking; a photodiode configured to measure a laser beam oscillated in the resonator; a synchronizer configured to convert an electrical signal, which is generated by measuring the laser beam, into a transistor-transistor logic (TTL) signal; a delay unit configured to set a delay time for the TTL signal to synchronize the EOM and the AOM and output a trigger TTL signal according to the delay time; an AOM driver configured to input the trigger TTL signal to the AOM that performs mode-locking and drive the AOM; and an EOM driver configured to input the trigger TTL signal to the EOM that performs single pulse switching and drive the EOM.
    Type: Application
    Filed: December 14, 2016
    Publication date: November 9, 2017
    Applicant: Korea Institute of Science and Technology
    Inventors: Young Min JHON, Joon Mo AHN, Min Ah SEO, Chul Ki KIM, Jae Hun KIM, Taik Jin LEE, Jae Bin CHOI, Deok Ha WOO
  • Patent number: 9793677
    Abstract: Disclosed herein is a single pulse laser apparatus that includes: a resonator having a first mirror, a second mirror, a gain medium, an electro-optic modulator (EOM) configured to perform single pulse switching, and an acousto-optic modulator (AOM) configured to perform mode-locking; a photodiode configured to measure a laser beam oscillated in the resonator; a synchronizer configured to convert an electrical signal, which is generated by measuring the laser beam, into a transistor-transistor logic (TTL) signal; a delay unit configured to set a delay time for the TTL signal to synchronize the EOM and the AOM and output a trigger TTL signal according to the delay time; an AOM driver configured to input the trigger TTL signal to the AOM that performs mode-locking and drive the AOM; and an EOM driver configured to input the trigger TTL signal to the EOM that performs single pulse switching and drive the EOM.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: October 17, 2017
    Assignee: Korea Institute of Science and Technology
    Inventors: Young Min Jhon, Joon Mo Ahn, Min Ah Seo, Chul Ki Kim, Jae Hun Kim, Taik Jin Lee, Jae Bin Choi, Deok Ha Woo
  • Patent number: 9650660
    Abstract: Disclosed herein are a method and device for sensing avian influenza viruses, using terahertz electromagnetic waves. By the method, even a trace amount of avian influenza viruses in a liquid state can be accurately discriminated and sensed, with high sensitivity and selectivity, using a sensing chip that works in a terahertz electromagnetic wave band. Using the method, avian influenza viruses even at low concentrations can be accurately analyzed with high sensitivity and selectivity in which terahertz electromagnetic waves are irradiated onto avian influenza viruses through a sensing chip having a meta unit in which a pattern is formed to amplify a frequency corresponding to an absorption frequency of an avian influenza virus of interest.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: May 16, 2017
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Min-Ah Seo, Dong-Kyu Lee, Jun-Seok Lee, Jae-Hun Kim, Chul-Ki Kim, Taik-Jin Lee, Seok Lee, Young-Min Jhon
  • Publication number: 20170082540
    Abstract: Disclosed herein are a method and device for sensing pesticide residues, using terahertz electromagnetic waves. By the method, even a trace amount of pesticide residues on objects such as fruits can be accurately discriminated and sensed, with high sensitivity and selectivity, using a sensing chip that works in a terahertz electromagnetic wave band. Using the method, pesticide residues even at low concentrations can be accurately analyzed with high sensitivity and selectivity in which terahertz electromagnetic waves are irradiated onto pesticide residues through a sensing chip having a meta unit in which a pattern is formed to amplify a frequency corresponding to an absorption frequency of a pesticide residue of interest.
    Type: Application
    Filed: March 24, 2016
    Publication date: March 23, 2017
    Inventors: Min-Ah SEO, Dong-Kyu LEE, Chul-Ki KIM, Taik-Jin LEE, Jae-Hun KIM, Young-Min Jhon
  • Publication number: 20170079563
    Abstract: Disclosed herein are a method and a device for sensing sugars, using terahertz electromagnetic waves. By the method, even a trace amount of sugars in a liquid state can be accurately discriminated and sensed, with high sensitivity and selectivity, using a sensing chip that works in a terahertz electromagnetic wave band. Using the method, sugars even at low concentrations can be accurately analyzed with high sensitivity and selectivity in which terahertz electromagnetic waves are irradiated onto sugars through a sensing chip having a meta unit in which a pattern is formed to amplify a frequency corresponding to an absorption frequency of a sugar of interest.
    Type: Application
    Filed: March 24, 2016
    Publication date: March 23, 2017
    Inventors: Min-Ah SEO, Dong-Kyu LEE, Jae-Hun KIM, Chul-Ki KIM, Taik-Jin LEE, Young-Min JHON
  • Publication number: 20170081695
    Abstract: Disclosed herein are a method and device for sensing avian influenza viruses, using terahertz electromagnetic waves. By the method, even a trace amount of avian influenza viruses in a liquid state can be accurately discriminated and sensed, with high sensitivity and selectivity, using a sensing chip that works in a terahertz electromagnetic wave band. Using the method, avian influenza viruses even at low concentrations can be accurately analyzed with high sensitivity and selectivity in which terahertz electromagnetic waves are irradiated onto avian influenza viruses through a sensing chip having a meta unit in which a pattern is formed to amplify a frequency corresponding to an absorption frequency of an avian influenza virus of interest.
    Type: Application
    Filed: March 30, 2016
    Publication date: March 23, 2017
    Inventors: Min-Ah SEO, Dong-Kyu LEE, Jun-Seok LEE, Jae-Hun KIM, Chul-Ki KIM, Taik-Jin LEE, Seok LEE, Young-Min Jhon
  • Publication number: 20160352068
    Abstract: Provided is a single pulse laser apparatus. The apparatus including a resonator having a first mirror, a second mirror, a gain medium, and electro-optic modulators (EOMs) which perform each mode-locking and Q-switching, the apparatus includes a photodiode which measures laser light that oscillates from the resonator, a synchronizer which converts an electrical signal generated by measuring the laser light into a transistor-transistor logic (TTL) signal, a delay unit which sets a latency determined in order to synchronize a mode-locked pulse with a Q-switched pulse to the TTL signal, and outputs a trigger TTL signal according to the latency, and a Q-driver which inputs the trigger TTL signal to the EOM which performs Q-switching, and causes the EOM to operates.
    Type: Application
    Filed: May 26, 2016
    Publication date: December 1, 2016
    Applicant: Korea Institute of Science and Technology
    Inventors: Young Min JHON, Joon Mo AHN, Seok LEE, Jae Hun KIM, Min Ah SEO, Chul Ki KIM, Taik Jin LEE, Deok Ha WOO, Min Chul PARK
  • Publication number: 20160192467
    Abstract: Provided is an extreme ultra-violet (EUV) beam generation apparatus using multi-gas cell modules in which a gas is prevented from directly flowing into a vacuum chamber by adding an auxiliary gas cell serving as a buffer chamber to a main gas cell, a diffusion rate of the gas is decreased, a high vacuum state is maintained, and a higher power EUV beam is continuously generated.
    Type: Application
    Filed: December 28, 2015
    Publication date: June 30, 2016
    Inventors: Young Min JHON, Yong Soo KIM, Joon Mo AHN, Min Ah SEO, Jae Hun KIM, Min Chul PARK, Young Tae BYUN, Chul Ki KIM, Seok LEE, Deok Ha Woo
  • Patent number: 9261714
    Abstract: A plasmonic all-optical switch includes a graphene layer, a first dielectric layer located on the graphene layer, a nano-antenna located on the first dielectric layer, and a second dielectric layer located on the nano-antenna. An incident beam is propagated by means of a surface plasmon wave generated at an interface between the graphene layer and the first dielectric layer. Further, localized surface plasmon resonance is selectively generated at an interface between the nano-antenna and the second dielectric layer by means of a pump beam incident to the nano-antenna to decrease an intensity of the incident beam. The plasmonic all-optical switch may operate at an ultrahigh speed just with a small light energy without any electric method, greatly reduce power consumption of an IT device by applying to an all-optical transistor or the like, and increase a processing rate.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: February 16, 2016
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sun Ho Kim, Jae Hun Kim, Chulki Kim, Kyungsun Moon, Min Ah Seo, Deok Ha Woo, Seok Lee, Jong Chang Yi, Taikjin Lee, Youngchul Chung
  • Publication number: 20160018675
    Abstract: A plasmonic all-optical switch includes a graphene layer, a first dielectric layer located on the graphene layer, a nano-antenna located on the first dielectric layer, and a second dielectric layer located on the nano-antenna. An incident beam is propagated by means of a surface plasmon wave generated at an interface between the graphene layer and the first dielectric layer. Further, localized surface plasmon resonance is selectively generated at an interface between the nano-antenna and the second dielectric layer by means of a pump beam incident to the nano-antenna to decrease an intensity of the incident beam. The plasmonic all-optical switch may operate at an ultrahigh speed just with a small light energy without any electric method, greatly reduce power consumption of an IT device by applying to an all-optical transistor or the like, and increase a processing rate.
    Type: Application
    Filed: November 5, 2014
    Publication date: January 21, 2016
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sun Ho KIM, Jae Hun KIM, Chulki KIM, Kyungsun MOON, Min Ah SEO, Deok Ha WOO, Seok LEE, Jong Chang YI, Taikjin LEE, Youngchul CHUNG
  • Publication number: 20150346029
    Abstract: Disclosed are herein an apparatus and method for extreme ultraviolet (EUV) spectroscope calibration. The apparatus for EUV spectroscope calibration includes an EUV generating module, an Al filter, a diffraction grating, a CCD camera, a spectrum conversion module, and a control module that compares a wavelength value corresponding to a maximum peak among peaks of the spectrum depending on the order of the EUV light converted from the spectrum conversion module with a predetermined reference wavelength value depending on an order of high-order harmonics to calculate a difference value with the closest reference wavelength value, and controls the spectrum depending on the order of the EUV light converted from the spectrum conversion module to be moved in a direction of wavelength axis by the calculated difference value. Thus, it is possible to accurately measure a wavelength of a spectrum of EUV light used in EUV exposure technology and mask inspection technology.
    Type: Application
    Filed: September 19, 2014
    Publication date: December 3, 2015
    Inventors: Sun Ho KIM, Yong Soo KIM, Jae Hun KIM, Min-Chul PARK, Young Tae BYUN, Min Ah SEO, Joon Mo AHN, Deok Ha WOO, Seok LEE, Taik Jin LEE, Young Min JHON
  • Patent number: 9188484
    Abstract: Provided are an apparatus and method for calibrating an extreme ultraviolet (EUV) spectrometer in which a wavelength of a spectrum of EUV light used for EUV lithography and mask inspection technology can be measured accurately.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: November 17, 2015
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Young Min Jhon, Yong Soo Kim, Min Ah Seo, Jae Hun Kim, Min Chul Park, Sun Ho Kim, Deok Ha Woo, Seok Lee, Taik Jin Lee, Myung Suk Chun, Woon Jo Cho