Patents by Inventor Mineo Yamakawa

Mineo Yamakawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10969339
    Abstract: Optical readers are disclosed in examples herein. An example optical reader including a light source to emit a light beam; and a spot pattern generator to receive the light beam and to generate a two-dimensional spot array from the light beam, the two-dimensional spot array to be directed toward a substrate having nanostructures, the two-dimensional spot array to be sensed to detect a presence or an absence of a substance of interest on the substrate.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: April 6, 2021
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Charles M. Santori, James William Stasiak, Francesco Aieta, Anita Rogacs, Mineo Yamakawa, Kenneth Ward
  • Publication number: 20200232924
    Abstract: Optical readers are disclosed in examples herein. An example optical reader including a light source to emit a light beam; and a spot pattern generator to receive the light beam and to generate a two-dimensional spot array from the light beam, the two-dimensional spot array to be directed toward a substrate having nanostructures, the two-dimensional spot array to be sensed to detect a presence or an absence of a substance of interest on the substrate.
    Type: Application
    Filed: April 2, 2020
    Publication date: July 23, 2020
    Inventors: Charles M. SANTORI, James William STASIAK, Francesco AIETA, Anita ROGACS, Mineo YAMAKAWA, Kenneth WARD
  • Publication number: 20200166440
    Abstract: An embodiment of the invention relates to a device for detecting an analyte in a sample. The device comprises a fluidic network and an integrated circuitry component. The fluidic network comprises a sample zone, a cleaning zone and a detection zone. The fluidic network contains a magnetic particle and/or a signal particle. A sample containing an analyte is introduced, and the analyte interacts with the magnetic particle and/or the signal particle through affinity agents. A microcoil array or a mechanically movable permanent magnet is functionally coupled to the fluidic network, which are activatable to generate a magnetic field within a portion of the fluidic network, and move the magnetic particle from the sample zone to the detection zone. A detection element is present which detects optical or electrical signals from the signal particle, thus indicating the presence of the analyte.
    Type: Application
    Filed: January 31, 2020
    Publication date: May 28, 2020
    Inventors: Xing Su, David J. Liu, Kai Wu, Kenneth B. Swartz, Mineo Yamakawa
  • Patent number: 10620126
    Abstract: Optical readers are disclosed in examples herein. An example optical reader including a light source to emit a light beam; and a spot pattern generator to receive the light beam and to generate a two-dimensional spot array from the light beam, the two-dimensional spot array to be directed toward a substrate having nanostructures, the two-dimensional spot array to be sensed to detect a presence or an absence of a substance of interest on the substrate.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: April 14, 2020
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Charles M Santori, James William Stasiak, Francesco Aieta, Anita Rogacs, Mineo Yamakawa, Kenneth Ward
  • Patent number: 10222336
    Abstract: A system includes an illumination source, a detector and a processor. The detector acquires spectral measurements of a sample under test under at least one varying condition. The processor processes the measurements to generate at least one spectral representation that includes Raman spectra and at least one spectral representation that includes non-Raman spectra.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: March 5, 2019
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Huei Pei Kuo, Zhiyong Li, Shih-Yuan Wang, Alexandre M Bratkovski, Steven Barcelo, Ansoon Kim, Gary Gibson, Mineo Yamakawa
  • Publication number: 20180372601
    Abstract: An embodiment of the invention relates to a device for detecting an analyte in a sample. The device comprises a fluidic network and an integrated circuitry component. The fluidic network comprises a sample zone, a cleaning zone and a detection zone. The fluidic network contains a magnetic particle and/or a signal particle. A sample containing an analyte is introduced, and the analyte interacts with the magnetic particle and/or the signal particle through affinity agents. A microcoil array or a mechanically movable permanent magnet is functionally coupled to the fluidic network, which are activatable to generate a magnetic field within a portion of the fluidic network, and move the magnetic particle from the sample zone to the detection zone. A detection element is present which detects optical or electrical signals from the signal particle, thus indicating the presence of the analyte.
    Type: Application
    Filed: January 9, 2018
    Publication date: December 27, 2018
    Inventors: Xing Su, David J. Liu, Kai Wu, Kenneth B. Swartz, Mineo Yamakawa
  • Publication number: 20180321155
    Abstract: Optical readers are disclosed in examples herein. An example optical reader including a light source to emit a light beam; and a spot pattern generator to receive the light beam and to generate a two-dimensional spot array from the light beam, the two-dimensional spot array to be directed toward a substrate having nanostructures, the two-dimensional spot array to be sensed to detect a presence or an absence of a substance of interest on the substrate.
    Type: Application
    Filed: January 29, 2016
    Publication date: November 8, 2018
    Inventors: Charles M. SANTORI, James William STASIAK, Francesco AIETA, Anita ROGACS, Mineo YAMAKAWA, Kenneth WARD
  • Patent number: 9879299
    Abstract: The present disclosure is drawn to a device for monitoring and controlling live cells and associated methods. In an example, the device can include a plurality of elongated nanostructures affixed to a substrate. The elongated nanostructures can each have an attachment end and a free end opposite the attachment end. The free end includes a metal and the attachment end is affixed to the substrate. The device can further include a functionalization layer that is coated on the free end of at least a portion of the plurality of elongated nanostructures. The functionalization layer can be formulated to retain live cells, and the device can be configured to be used in conjunction with a detector, such as a Raman spectrometer, in order to monitor growth of live cells.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: January 30, 2018
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Mineo Yamakawa, Zhiyong Li
  • Patent number: 9863857
    Abstract: An embodiment of the invention relates to a device for detecting an analyte in a sample. The device comprises a fluidic network and an integrated circuitry component. The fluidic network comprises a sample zone, a cleaning zone and a detection zone. The fluidic network contains a magnetic particle and/or a signal particle. A sample containing an analyte is introduced, and the analyte interacts with the magnetic particle and/or the signal particle through affinity agents. A microcoil array or a mechanically movable permanent magnet is functionally coupled to the fluidic network, which are activatable to generate a magnetic field within a portion of the fluidic network, and move the magnetic particle from the sample zone to the detection zone. A detection element is present which detects optical or electrical signals from the signal particle, thus indicating the presence of the analyte.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: January 9, 2018
    Assignee: Intel Corporation
    Inventors: Xing Su, David J. Liu, Kai Wu, Kenneth B. Swartz, Mineo Yamakawa
  • Patent number: 9675288
    Abstract: According to an example, an apparatus for performing spectroscopy includes an elongated substrate having a shape and size to be inserted into a specimen, wherein the elongated substrate has a first end and a second end. The apparatus also includes a plurality of surface-enhanced spectroscopy (SES) elements positioned on an exterior surface of the elongated substrate at a location between the first end and the second end of the elongated substrate.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: June 13, 2017
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Mineo Yamakawa, Zhiyong Li
  • Patent number: 9267944
    Abstract: Systems and methods for detecting the presence of biomolecules in a sample using biosensors that incorporate resonators which have functionalized surfaces for reacting with target biomolecules. In one embodiment, a device includes a piezoelectric resonator having a functionalized surface configured to react with target molecules, thereby changing the mass and/or charge of the resonator which consequently changes the frequency response of the resonator. The resonator's frequency response after exposure to a sample is compared to a reference, such as the frequency response before exposure to the sample, a stored baseline frequency response or a control resonator's frequency response.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: February 23, 2016
    Assignee: INTEL CORPORATION
    Inventors: Yuegang Zhang, Andrew Berlin, Qing Ma, Li-Peng Wang, Valluri Rao, Mineo Yamakawa
  • Publication number: 20150374268
    Abstract: According to an example, an apparatus for performing spectroscopy includes an elongated substrate having a shape and size to be inserted into a specimen, wherein the elongated substrate has a first end and a second end. The apparatus also includes a plurality of surface-enhanced spectroscopy (SES) elements positioned on an exterior surface of the elongated substrate at a location between the first end and the second end of the elongated substrate.
    Type: Application
    Filed: January 29, 2013
    Publication date: December 31, 2015
    Inventors: Mineo YAMAKAWA, Zhiyong LI
  • Publication number: 20150329905
    Abstract: Embodiments of the present invention provide devices methods for sequencing DNA using arrays of reaction cavities containing sensors to monitor changes in solutions contained in the reaction cavities. Additional embodiments provide devices and methods for sequencing DNA using arrays of reaction cavities that allow for optical monitoring of solutions in the reaction cavities. Test and fill reaction schemes are disclosed that allow DNA to be sequenced. By sequencing DNA using parallel reactions contained in large arrays, DNA can be rapidly sequenced.
    Type: Application
    Filed: May 21, 2015
    Publication date: November 19, 2015
    Inventors: Tae-Woong KOO, Salena CHAN, Xing SU, Jingwu ZHANG, Mineo YAMAKAWA, Val M. DUBIN
  • Publication number: 20150241355
    Abstract: According to an example, an apparatus for performing spectroscopy includes a parabolic reflector and a plurality of surface-enhanced Raman spectroscopy (SERS) elements spaced from the parabolic reflector and positioned substantially at a focal point of the parabolic reflector. The parabolic reflector is to reflect Raman scattered light emitted from molecules in a near field generated by the plurality of SERS elements to substantially increase the flux of the Raman scattered light emitted out of the apparatus.
    Type: Application
    Filed: July 31, 2012
    Publication date: August 27, 2015
    Applicant: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Shih-Yuan Wang, Gary Gibson, Zhiyong Li, Alexandre M. Bratkovski, Steven Barcelo, Ansoon Kim, Mineo Yamakawa, Zhang-Lin Zhou, Huei Pei Kuo
  • Publication number: 20150211998
    Abstract: A system includes an illumination source, a detector and a processor. The detector acquires spectral measurements of a sample under test under at least one varying condition. The processor processes the measurements to generate at least one spectral representation that includes Raman spectra and at least one spectral representation that includes non-Raman spectra.
    Type: Application
    Filed: October 31, 2012
    Publication date: July 30, 2015
    Inventors: Huei Pei Kuo, Zhiyong Li, Shih-Yuan Wang, Alexandre M. Bratkovski, Steven Barcelo, Ansoon Kim, Gary Gibson, Mineo Yamakawa
  • Patent number: 9062392
    Abstract: The present invention is directed to methods, for example phage display assays, for bioengineering peptides that bind to individual distinct nucleotides. Also provided are peptides engineered by such methods. Specifically, cyclic peptides that bind individual distinct nucleotides are provided herein.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: June 23, 2015
    Assignee: INTEL CORPORATION
    Inventors: Mineo Yamakawa, Joseph V. Kosmoski, Deane C. Little
  • Patent number: 9040237
    Abstract: Embodiments of the present invention provide devices methods for sequencing DNA using arrays of reaction cavities containing sensors to monitor changes in solutions contained in the reaction cavities. Additional embodiments provide devices and methods for sequencing DNA using arrays of reaction cavities that allow for optical monitoring of solutions in the reaction cavities. Test and fill reaction schemes are disclosed that allow DNA to be sequenced. By sequencing DNA using parallel reactions contained in large arrays, DNA can be rapidly sequenced.
    Type: Grant
    Filed: September 13, 2005
    Date of Patent: May 26, 2015
    Assignee: INTEL CORPORATION
    Inventors: Tae-Woong Koo, Selena Chan, Xing Su, Zhang Jingwu, Mineo Yamakawa, Val M. Dubin
  • Publication number: 20150133305
    Abstract: The present invention is directed to methods, for example phage display assays, for bioengineering peptides that bind to individual distinct nucleotides. Also provided are peptides engineered by such methods. Specifically, cyclic peptides that bind individual distinct nucleotides are provided herein.
    Type: Application
    Filed: November 7, 2008
    Publication date: May 14, 2015
    Inventors: Mineo Yamakawa, Joseph V. Kosmoski, Deane C. Little
  • Publication number: 20150125965
    Abstract: Systems and methods for detecting the presence of biomolecules in a sample using biosensors that incorporate resonators which have functionalized surfaces for reacting with target biomolecules. In one embodiment, a device includes a piezoelectric resonator having a functionalized surface configured to react with target molecules, thereby changing the mass and/or charge of the resonator which consequently changes the frequency response of the resonator. The resonator's frequency response after exposure to a sample is compared to a reference, such as the frequency response before exposure to the sample, a stored baseline frequency response or a control resonator's frequency response.
    Type: Application
    Filed: January 12, 2015
    Publication date: May 7, 2015
    Inventors: Yuegang Zhang, Andrew Berlin, Qing Ma, Li-Peng Wang, Valluri Rao, Mineo Yamakawa
  • Patent number: 8940234
    Abstract: Systems and methods for detecting the presence of biomolecules in a sample using biosensors that incorporate resonators which have functionalized surfaces for reacting with target biomolecules. In one embodiment, a device includes a piezoelectric resonator having a functionalized surface configured to react with target molecules, thereby changing the mass and/or charge of the resonator which consequently changes the frequency response of the resonator. The resonator's frequency response after exposure to a sample is compared to a reference, such as the frequency response before exposure to the sample, a stored baseline frequency response or a control resonator's frequency response.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: January 27, 2015
    Assignee: Intel Corporation
    Inventors: Yuegang Zhang, Andrew A. Berlin, Qing Ma, Li-Peng Wang, Valluri Rao, Mineo Yamakawa