Patents by Inventor Minglin Ma

Minglin Ma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200390823
    Abstract: The present invention relates to a vascularized therapeutic delivery system. This system includes a preparation of cells encapsulated by a biological support material and a microvascular mesh that at least partially surrounds the biological support material encapsulating the preparation of cells, where the microvascular mesh includes a network of continuous interconnected tubular structures defined by endothelial cells and an extracellular matrix scaffold. Also disclosed are methods for delivering a therapeutic agent to a subject using the vascularized therapeutic delivery system and methods of producing such a vascularized therapeutic delivery system.
    Type: Application
    Filed: February 7, 2019
    Publication date: December 17, 2020
    Inventors: Minglin MA, Wei SONG, Alan CHIU
  • Patent number: 10842753
    Abstract: Covalently modified alginate polymers, possessing enhanced biocompatibility and tailored physiochemical properties, as well as methods of making and use thereof, are disclosed herein. The covalently modified alginates are useful as a matrix for the encapsulation and transplantation of cells. Also disclosed are high throughput methods for the characterizing the biocompatibility and physiochemical properties of modified alginate polymers.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: November 24, 2020
    Assignees: Massachusetts Institute of Technology, The Children's Medical Center Corporation
    Inventors: Arturo J. Vegas, Minglin Ma, Kaitlin M. Bratlie, Daniel G. Anderson, Robert S. Langer
  • Patent number: 10835486
    Abstract: Biocompatible hydrogel capsules encapsulating mammalian cells having a diameter of greater than 1 mm, and optionally a cell free core, are disclosed which have reduced fibrotic overgrowth after implantation in a subject. Methods of treating a disease in a subject are also disclosed that involve administering a therapeutically effective amount of the disclosed encapsulated cells to the subject.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: November 17, 2020
    Assignees: Massachusetts Institute of Technology, The Children's Medical Center Corporation
    Inventors: Minglin Ma, Daniel G. Anderson, Robert S. Langer, Omid Veiseh, Arturo Jose Vegas, Joshua Charles Doloff, Delai Chen, Christian J. Kastrup
  • Patent number: 10786446
    Abstract: Biomedical devices for implantation with decreased pericapsular fibrotic overgrowth are disclosed. The device includes biocompatible materials and has specific characteristics that allow the device to elicit less of a fibrotic reaction after implantation than the same device lacking one or more of these characteristic that are present on the device. Biocompatible hydrogel capsules encapsulating mammalian cells having a diameter of greater than 1 mm, and optionally a cell free core, are disclosed which have reduced fibrotic overgrowth after implantation in a subject. Methods of treating a disease in a subject are also disclosed that involve administering a therapeutically effective amount of the disclosed encapsulated cells to the subject.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: September 29, 2020
    Assignees: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, THE CHILDREN'S MEDICAL CENTER CORPORATION
    Inventors: Minglin Ma, Daniel G. Anderson, Robert S. Langer, Omid Veiseh, Joshua Charles Doloff, Delai Chen, Christian J. Kastrup, Arturo Jose Vegas
  • Patent number: 10729818
    Abstract: Covalently modified alginate polymers, possessing enhanced biocompatibility and tailored physiochemical properties, as well as methods of making and use thereof, are disclosed herein. The covalently modified alginates are useful as a matrix for coating of any material where reduced fibrosis is desired, such as encapsulated cells for transplantation and medical devices implanted or used in the body.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: August 4, 2020
    Assignees: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, THE CHILDREN'S MEDICAL CENTER CORPORATION
    Inventors: Arturo J. Vegas, Joshua C. Doloff, Omid Veiseh, Minglin Ma, Robert S. Langer, Daniel G. Anderson
  • Patent number: 10709818
    Abstract: Covalently modified alginate polymers, possessing enhanced biocompatibility and tailored physiochemical properties, as well as methods of making and use thereof, are disclosed herein. The covalently modified alginates are useful as a matrix for coating of any material where reduced fibrosis is desired, such as encapsulated cells for transplantation and medical devices implanted or used in the body.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: July 14, 2020
    Assignees: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, THE CHILDREN'S MEDICAL CENTER CORPORATION
    Inventors: Arturo J. Vegas, Joshua C. Doloff, Omid Veiseh, Minglin Ma, Robert S. Langer, Daniel G. Anderson
  • Publication number: 20200172741
    Abstract: The present application discloses a method of forming a hydrogel-coated substrate, wherein the hydrogel has antifouling and antimicrobial properties. The method comprises applying an aqueous pre-hydrogel solution to a substrate, polymerizing the aqueous pre-hydrogel solution, thereby forming a coated substrate having a conformal hydrogel coating and a non-conformal hydrogel coating, contacting the coated substrate with a swelling agent, and removing the non-conformal hydrogel coating from the coated substrate, thereby leaving the conformal hydrogel coating on the substrate to form the hydrogel-coated substrate. The aqueous pre-hydrogel solution comprises a monomer with antimicrobial activity, a monomer with antifouling activity, and either a polymer, oligomer, or macromer which, when polymerized together, form a hydrogel. Also disclosed is a coated substrate and a hydrogel coating.
    Type: Application
    Filed: November 26, 2019
    Publication date: June 4, 2020
    Inventors: Minglin MA, You YONG, Mingyu QIAO, Qingsheng LIU
  • Publication number: 20200171095
    Abstract: The present invention relates to an implantable therapeutic delivery system, methods of treatment utilizing the implantable therapeutic delivery system, and methods of fabricating the implantable delivery system.
    Type: Application
    Filed: October 29, 2019
    Publication date: June 4, 2020
    Inventors: Minglin MA, James A. FLANDERS, Duo AN
  • Publication number: 20200016085
    Abstract: Covalently modified alginate polymers, possessing enhanced biocompatibility and tailored physiochemical properties, as well as methods of making and use thereof, are disclosed herein. The covalently modified alginates are useful as a matrix for coating of any material where reduced fibrosis is desired, such as encapsulated cells for transplantation and medical devices implanted or used in the body.
    Type: Application
    Filed: September 26, 2019
    Publication date: January 16, 2020
    Inventors: Arturo J. Vegas, Joshua C. Doloff, Omid Veiseh, Minglin Ma, Robert S. Langer, Daniel G. Anderson
  • Publication number: 20190389979
    Abstract: The present invention is directed to a polymer of Formula (IV): wherein A, X, Q, Y, Z, m1; m2, m3, k1; and k2 are as described herein and wherein the monomer units of the polymer are the same or different. The present invention also relates to a monomer of Formula (III), wherein R?, X1, Y1, Z1, m4, m5, and m6 are as described herein, and a polymeric network comprising two or more monomers of Formula (III). The present invention also relates to a hydrogel comprising any of the polymers and monomers described herein, a capsule comprising the hydrogel, and a method of delivering a therapeutic agent to a subject using the capsule.
    Type: Application
    Filed: January 27, 2018
    Publication date: December 26, 2019
    Inventors: Minglin MA, Qingsheng LIU
  • Patent number: 10493107
    Abstract: The present invention relates to an implantable therapeutic delivery system, methods of treatment utilizing the implantable therapeutic delivery system, and methods of fabricating the implantable delivery system. A first aspect of the present invention is directed to an implantable therapeutic delivery system. This therapeutic delivery system comprises a substrate, an inner polymeric coating that surrounds the substrate, and an outer hydrogel coating that surrounds said inner polymeric coating. One or more therapeutic agents are positioned in the outer hydrogel coating.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: December 3, 2019
    Assignee: CORNELL UNIVERSITY
    Inventors: Minglin Ma, James A. Flanders, Duo An
  • Patent number: 10426735
    Abstract: Covalently modified alginate polymers, possessing enhanced biocompatibility and tailored physiochemical properties, as well as methods of making and use thereof, are disclosed herein. The covalently modified alginates are useful as a matrix for coating of any material where reduced fibrosis is desired, such as encapsulated cells for transplantation and medical devices implanted or used in the body.
    Type: Grant
    Filed: August 3, 2015
    Date of Patent: October 1, 2019
    Assignees: Massachusetts Institute of Technology, The Children's Medical Center Corporation
    Inventors: Arturo J. Vegas, Joshua C. Doloff, Omid Veiseh, Minglin Ma, Robert S. Langer, Daniel G. Anderson
  • Publication number: 20190262272
    Abstract: Covalently modified alginate polymers, possessing enhanced biocompatibility and tailored physiochemical properties, as well as methods of making and use thereof, are disclosed herein. The covalently modified alginates are useful as a matrix for the encapsulation and transplantation of cells. Also disclosed are high throughput methods for the characterizing the biocompatibility and physiochemical properties of modified alginate polymers.
    Type: Application
    Filed: May 10, 2019
    Publication date: August 29, 2019
    Inventors: Arturo J. Vegas, Minglin Ma, Kaitlin M. Bratlie, Daniel G. Anderson, Robert S. Langer
  • Publication number: 20190184067
    Abstract: Covalently modified alginate polymers, possessing enhanced biocompatibility and tailored physiochemical properties, as well as methods of making and use thereof, are disclosed herein. The covalently modified alginates are useful as a matrix for coating of any material where reduced fibrosis is desired, such as encapsulated cells for transplantation and medical devices implanted or used in the body.
    Type: Application
    Filed: February 28, 2019
    Publication date: June 20, 2019
    Inventors: Arturo Vegas, Joshua C. Doloff, Omid Veiseh, Minglin Ma, Robert S. Langer, Daniel G. Anderson
  • Patent number: 10292936
    Abstract: Covalently modified alginate polymers, possessing enhanced biocompatibility and tailored physiochemical properties, as well as methods of making and use thereof, are disclosed herein. The covalently modified alginates are useful as a matrix for the encapsulation and transplantation of cells. Also disclosed are high throughput methods for the characterizing the biocompatibility and physiochemical properties of modified alginate polymers.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: May 21, 2019
    Assignees: Massachusetts Institute of Technology, The Children's Medical Center Corporation
    Inventors: Arturo J. Vegas, Minglin Ma, Kaitlin M Bratlie, Daniel G. Anderson, Robert S. Langer
  • Patent number: 10285949
    Abstract: Covalently modified alginate polymers, possessing enhanced biocompatibility and tailored physiochemical properties, as well as methods of making and use thereof, are disclosed herein. The covalently modified alginates are useful as a matrix for the encapsulation and transplantation of cells. Also disclosed are high throughput methods for the characterizing the biocompatibility and physiochemical properties of modified alginate polymers.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: May 14, 2019
    Assignees: Massachusetts Institute of Technology, The Chidren's Medical Center Corporation
    Inventors: Arturo J. Vegas, Minglin Ma, Kaitlin M. Bratlie, Daniel G. Anderson, Robert S. Langer
  • Publication number: 20190091139
    Abstract: Biomedical devices for implantation with decreased pericapsular fibrotic overgrowth are disclosed. The device includes biocompatible materials and has specific characteristics that allow the device to elicit less of a fibrotic reaction after implantation than the same device lacking one or more of these characteristic that are present on the device. Biocompatible hydrogel capsules encapsulating mammalian cells having a diameter of greater than 1 mm, and optionally a cell free core, are disclosed which have reduced fibrotic overgrowth after implantation in a subject. Methods of treating a disease in a subject are also disclosed that involve administering a therapeutically effective amount of the disclosed encapsulated cells to the subject.
    Type: Application
    Filed: November 26, 2018
    Publication date: March 28, 2019
    Inventors: Minglin Ma, Daniel G. Anderson, Robert S. Langer, Omid Veiseh, Joshua Charles Doloff, Delai Chen, Christian J. Kastrup, Arturo Jose Vegas
  • Patent number: 10172791
    Abstract: Biomedical devices for implantation with decreased pericapsular fibrotic overgrowth are disclosed. The device includes biocompatible materials and has specific characteristics that allow the device to elicit less of a fibrotic reaction after implantation than the same device lacking one or more of these characteristic that are present on the device. Biocompatible hydrogel capsules encapsulating mammalian cells having a diameter of greater than 1 mm, and optionally a cell free core, are disclosed which have reduced fibrotic overgrowth after implantation in a subject. Methods of treating a disease in a subject are also disclosed that involve administering a therapeutically effective amount of the disclosed encapsulated cells to the subject.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: January 8, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Minglin Ma, Daniel G. Anderson, Robert S. Langer, Omid Veiseh, Joshua Charles Doloff, Delai Chen, Christian J. Kastrup, Arturo Jose Vegas
  • Publication number: 20180360765
    Abstract: Covalently modified alginate polymers, possessing enhanced biocompatibility and tailored physiochemical properties, as well as methods of making and use thereof, are disclosed herein. The covalently modified alginates are useful as a matrix for coating of any material where reduced fibrosis is desired, such as encapsulated cells for transplantation and medical devices implanted or used in the body.
    Type: Application
    Filed: August 22, 2018
    Publication date: December 20, 2018
    Inventors: Arturo J. Vegas, Joshua C. Doloff, Omid Veiseh, Minglin Ma, Robert S. Langer, Daniel G. Anderson
  • Publication number: 20180353643
    Abstract: Biomedical devices for implantation with decreased pericapsular fibrotic overgrowth are disclosed. The device includes biocompatible materials and has specific characteristics that allow the device to elicit less of a fibrotic reaction after implantation than the same device lacking one or more of these characteristic that are present on the device. Biocompatible hydrogel capsules encapsulating mammalian cells having a diameter of greater than 1 mm, and optionally a cell free core, are disclosed which have reduced fibrotic overgrowth after implantation in a subject. Methods of treating a disease in a subject are also disclosed that involve administering a therapeutically effective amount of the disclosed encapsulated cells to the subject.
    Type: Application
    Filed: May 17, 2016
    Publication date: December 13, 2018
    Inventors: Minglin Ma, Daniel G. Anderson, Robert S. Langer, Omid Veiseh, Arturo Jose Vegas, Joshua Charles Doloff, Delai Chen, Christian J. Kastrup