Patents by Inventor Minh Huu Le

Minh Huu Le has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8900423
    Abstract: A method for forming boron oxide films formed using reactive sputtering. The boron oxide films are candidates as an anti-reflection coating. Boron oxide films with a refractive index of about 1.38 can be formed. The boron oxide films can be formed using power densities between 2 W/cm2 and 11 W/cm2 applied to the target. The oxygen in the reactive sputtering atmosphere can be between 40 volume % and 90 volume %.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: December 2, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Guowen Ding, Mohd Fadzli Anwar Hassan, Minh Huu Le, Zhi-Wen Sun, Yu Wang
  • Publication number: 20140322507
    Abstract: Disclosed herein are systems, methods, and apparatus for forming low emissivity panels. In some embodiments, a partially fabricated panel may be provided that includes a substrate, a reflective layer formed over the substrate, and a barrier layer formed over the reflective layer such that the reflective layer is formed between the substrate and the barrier layer. The barrier layer may include a partially oxidized alloy of three or more metals. A first interface layer may be formed over the barrier layer. A top dielectric layer may be formed over the first interface layer. The top dielectric layer may be formed using reactive sputtering in an oxygen containing environment. The first interface layer may prevent further oxidation of the partially oxidized alloy of the three or more metals when forming the top dielectric layer. A second interface layer may be formed over the top dielectric layer.
    Type: Application
    Filed: December 31, 2013
    Publication date: October 30, 2014
    Applicant: Intermolecular Inc.
    Inventors: Guowen Ding, Jeremy Cheng, Muhammad Imran, Minh Huu Le, Daniel Schweigert, Yongli Xu, Guizhen Zhang
  • Publication number: 20140308528
    Abstract: Disclosed herein are systems, methods, and apparatus for forming a low emissivity panel. In various embodiments, a partially fabricated panel may be provided. The partially fabricated panel may include a substrate, a reflective layer formed over the substrate, and a top dielectric layer formed over the reflective layer such that the reflective layer is formed between the substrate and the top dielectric layer. The top dielectric layer may include tin having an oxidation state of +4. An interface layer may be formed over the top dielectric layer. A top diffusion layer may be formed over the interface layer. The top diffusion layer may be formed in a nitrogen plasma environment. The interface layer may substantially prevent nitrogen from the nitrogen plasma environment from reaching the top dielectric layer and changing the oxidation state of tin included in the top dielectric layer.
    Type: Application
    Filed: December 31, 2013
    Publication date: October 16, 2014
    Applicant: Intermolecular Inc.
    Inventors: Guowen Ding, Brent Boyce, Jeremy Cheng, Jose Ferreira, Muhammad Imran, Minh Huu Le, Daniel Schweigert, Yu Wang, Yongli Xu, Guizhen Zhang
  • Publication number: 20140287254
    Abstract: A transparent dielectric composition comprising tin, oxygen and one of aluminum or magnesium with preferably higher than 15% by weight of aluminum or magnesium offers improved thermal stability over tin oxide with respect to appearance and optical properties under high temperature processes. For example, upon a heat treatment at temperatures higher than 500 C, changes in color and index of refraction of the present transparent dielectric composition are noticeably less than those of tin oxide films of comparable thickness. The transparent dielectric composition can be used in high transmittance, low emissivity coated panels, providing thermal stability so that there are no significant changes in the coating optical and structural properties, such as visible transmission, IR reflectance, microscopic morphological properties, color appearance, and haze characteristics, of the as-coated and heated treated products.
    Type: Application
    Filed: June 9, 2014
    Publication date: September 25, 2014
    Inventors: Mohd Fadzli Anwar Hassan, Richard Blacker, Guowen Ding, Muhammad Imran, Jingyu Lao, Minh Huu Le, Yiwei Lu, Zhi-Wen Wen Sun
  • Publication number: 20140268317
    Abstract: Embodiments provided herein describe low-e panels and methods for forming low-e panels. A transparent substrate is provided. A reflective layer is formed above the transparent substrate. An over-coating layer is formed above the reflective layer. The over-coating layer includes first, second, and third sub-layers.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Guowen Ding, Jeremy Cheng, Minh Huu Le, Daniel Schweigert, Zhi-Wen Wen Sun, Guizhen Zhang
  • Publication number: 20140272290
    Abstract: Embodiments provided herein describe anti-glare coatings and panels and methods for forming anti-glare coatings and panels. A transparent substrate is provided. A polymer is sputtered onto the transparent substrate to form an anti-glare coating on the transparent substrate.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Scott Jewhurst, Nikhil Kalyankar, Minh Huu Le
  • Publication number: 20140272454
    Abstract: Provided is High Productivity Combinatorial (HPC) testing methodology of semiconductor substrates, each including multiple site isolated regions. The site isolated regions are used for testing different compositions and/or structures of barrier layers disposed over silver reflectors. The tested barrier layers may include all or at least two of nickel, chromium, titanium, and aluminum. In some embodiments, the barrier layers include oxygen. This combination allows using relative thin barrier layers (e.g., 5-30 Angstroms thick) that have high transparency yet provide sufficient protection to the silver reflector. The amount of nickel in a barrier layer may be 5-10% by weight, chromium—25-30%, titanium and aluminum—30%-35% each. The barrier layer may be co-sputtered in a reactive or inert-environment using one or more targets that include all four metals. An article may include multiple silver reflectors, each having its own barrier layer.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Guizhen Zhang, Jeremy Cheng, Guowen Ding, Minh Huu Le, Daniel Schweigert, Yu Wang
  • Publication number: 20140272354
    Abstract: Low emissivity panels can include a separation layer of Zn2SnOx between multiple infrared reflective stacks. The low emissivity panels can also include NiNbTiOx as barrier layer. The low emissivity panels have high light to solar gain, color neutral, together with similar observable color before and after a heat treatment process.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Guowen Ding, Jeremy Cheng, Tong Ju, Minh Huu Le, Phil Lingle, Daniel Schweigert, Zhi-Wen Wen Sun, Guizhen Zhang
  • Publication number: 20140268316
    Abstract: Disclosed herein are systems, methods, and apparatus for forming low emissivity panels that may include a substrate and a reflective layer formed over the substrate. The low emissivity panels may further include a top dielectric layer formed over the reflective layer such that the reflective layer is formed between the top dielectric layer and the substrate. The top dielectric layer may include a ternary metal oxide, such as zinc tin aluminum oxide. The top dielectric layer may also include aluminum. The concentration of aluminum may be between about 1 atomic % and 15 atomic % or between about 2 atomic % and 10 atomic %. An atomic ratio of zinc to tin in the top dielectric layer may be between about 0.67 and about 1.5 or between about 0.9 and about 1.1.
    Type: Application
    Filed: December 23, 2013
    Publication date: September 18, 2014
    Applicant: Intermolecular Inc.
    Inventors: Guizhen Zhang, Brent Boyce, Jeremy Cheng, Guowen Ding, Muhammad Imran, Minh Huu Le, Daniel Schweigert, Yongli Xu
  • Publication number: 20140273311
    Abstract: Optical absorbers and methods are disclosed. The methods comprise depositing a plurality of precursor layers comprising one or more of Cu, Ga, and In on a substrate, and heating the layers in a chalcogenizing atmosphere. The plurality of precursor layers can be one or more sets of layers comprising at least two layers, wherein each layer in each set of layers comprises one or more of Cu, Ga, and In exhibiting a single phase. The layers can be deposited using two or three targets selected from Ag and In containing less than 21% In by weight, Cu and Ga where the Cu and Ga target comprises less than 45% Ga by weight, Cu(In,Ga), wherein the Cu(In,Ga) target has an atomic ratio of Cu to (In+Ga) greater than 2 and an atomic ratio of Ga to (Ga+In) greater than 0.5, elemental In, elemental Cu, and In2Se3 and In2S3.
    Type: Application
    Filed: December 13, 2013
    Publication date: September 18, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Haifan Liang, Jessica Eid, Minh Huu Le, Jeroen Van Duren
  • Publication number: 20140272390
    Abstract: Embodiments provided herein describe low-e panels and methods for forming low-e panels. A transparent substrate is provided. A reflective layer is formed above the transparent substrate. A barrier layer is formed above the reflective layer. A nitride-containing layer is formed above the barrier layer. The nitride-containing layer has a thickness that is 1 nm or less. A over-coating layer is formed above the nitride-containing layer. The over-coating layer includes a different material than that of the nitride-containing layer.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Guowen Ding, Brent Boyce, Minh Huu Le, Zhi-Wen Wen Sun, Yu Wang
  • Publication number: 20140264321
    Abstract: In some embodiments, oxidants such as ozone (O3) and/or nitrous oxide (N2O) are used during the reactive sputtering of metal-based semiconductor layers used in TFT devices. The O3 and N2O gases are stronger oxidants and result in a decrease in the concentration of oxygen vacancies within the metal-based semiconductor layer. The decrease in the concentration of oxygen vacancies may result in improved stability under conditions of negative bias illumination stress (NBIS).
    Type: Application
    Filed: December 20, 2013
    Publication date: September 18, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Haifan Liang, Charlene Chen, Sang Lee, Minh Huu Le, Jeroen Van Duren
  • Publication number: 20140273404
    Abstract: In some embodiments, methods are described that allow the processing of a substrate using microwave-based degas systems. The methods allow process variables such as power, dwell time, frequency, backside cooling gas usage, backside cooling gas flow rate, and the like to be investigated. In some embodiments, apparatus are described that allow the investigation of process variables used in microwave-based degas systems to remove adsorbed species from the surface of a substrate. The apparatus allow process variables such as power, dwell time, frequency, backside cooling gas usage, backside cooling gas flow rate, and the like to be investigated.
    Type: Application
    Filed: November 27, 2013
    Publication date: September 18, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Kent Riley Child, Minh Huu Le
  • Publication number: 20140273340
    Abstract: Methods for HPC techniques are applied to the processing of site-isolated regions (SIR) on a substrate to form at least a portion of a TFT device used in display applications. The processing may be applied to at least one of gate electrode deposition, gate electrode patterning, gate dielectric deposition, gate dielectric patterning, metal-based semiconductor material (e.g. IGZO) deposition, metal-based semiconductor material (e.g. IGZO) patterning, etch stop deposition, etch stop patterning, source/drain deposition, source/drain patterning, passivation deposition, or passivation patterning. The SIRs may be defined during the deposition process with uniform deposition within each SIR or the SIRs may be defined subsequent to the deposition of layers wherein the layers are deposited with a gradient in one or more properties across the substrate.
    Type: Application
    Filed: December 2, 2013
    Publication date: September 18, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Jeroen Van Duren, Sang Lee, Minh Huu Le, Sandeep Nijhawan, Teresa B. Sapirman
  • Publication number: 20140272353
    Abstract: Low emissivity panels can include a protection layer of silicon nitride on a layer of ZnO on a layer of Zn2SnOx. The low emissivity panels can also include NiNbTiOx as a barrier layer. The low emissivity panels have high light to solar gain, color neutral, together with similar observable color and light transmission before and after a heat treatment process.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Guowen Ding, Jeremy Cheng, Tong Ju, Minh Huu Le, Daniel Schweigert, Guizhen Zhang
  • Publication number: 20140261660
    Abstract: Methods are used to develop and evaluate new materials and deposition processes for use as TCO materials in HJCS solar cells. The TCO layers allow improved control over the uniformity of the TCO conductivity and interface properties, and reduce the sensitivity to the texture of the wafer. In Some embodiments, the TCO materials include indium, zinc, tin, and aluminum.
    Type: Application
    Filed: November 18, 2013
    Publication date: September 18, 2014
    Applicant: Intermolecular , Inc.
    Inventors: Jianhua Hu, Heng-Kai Hsu, Minh Huu Le, Sandeep Nijhawan
  • Publication number: 20140268301
    Abstract: Disclosed herein are systems, methods, and apparatus for forming low emissivity panels that may include a first substrate. The first substrate may have a first side and a second side. The low emissivity panels may also include a magnetic fluid layer deposited over the first side of the first substrate and a reflective layer deposited over the second side of the first substrate. The magnetic fluid layer may include magnetic particles. The reflective layer may include a conductive material configured to conduct an electrical current and generate a magnetic field. The magnetic field may be configured to change an orientation of the magnetic particles in the magnetic fluid layer and a transmissivity of the magnetic fluid layer within a visible spectrum. The low emissivity panels may also include a first bus and a second bus deposited along opposite edges of the reflective layer and electrically connected to the reflective layer.
    Type: Application
    Filed: December 30, 2013
    Publication date: September 18, 2014
    Applicant: Intermolecular Inc.
    Inventors: Guowen Ding, Minh Huu Le
  • Publication number: 20140273407
    Abstract: Methods and compositions for the surface cleaning and passivation of CdTe substrates usable in solar cells are disclosed. In some embodiments amine-containing chelators are used and in other embodiments phosphorus-containing chelators are used.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: FIRST SOLAR, INC.
    Inventors: Scott Christensen, Scott Jewhurst, Minh Huu Le, Haifan Liang, Hao Lin, Wei Liu, Minh Anh Nguyen, Zhi Wen Sun, Gang Xiong
  • Publication number: 20140272455
    Abstract: A method for making low emissivity panels, including control the composition of a barrier layer formed on a thin conductive silver layer. The barrier structure can include a ternary alloy of titanium, nickel and niobium, which showed improvements in overall performance than those from binary barrier results. The percentage of titanium can be between 5 and 15 wt %. The percentage of nickel can be between 30 and 50 wt %. The percentage of niobium can be between 40 and 60 wt %.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Guowen Ding, Brent Boyce, Jeremy Cheng, Muhammad Imran, Jingyu Lao, Minh Huu Le, Daniel Schweigert, Zhi-Wen Wen Sun, Yu Wang, Yongli Xu, Guizhen Zhang
  • Publication number: 20140272112
    Abstract: Embodiments provided herein describe methods and systems for evaluating electrochromic material processing conditions. A substrate having a plurality of site-isolated regions defined thereon is provided. A first electrochromic material, or a first electrochromic device stack, is formed above a first of the plurality of site-isolated regions using a first set of processing conditions. A second electrochromic material, or a second electrochromic device stack, is formed above a second of the plurality of site-isolated regions using a second set of processing conditions. The second set of processing conditions is different than the first set of processing conditions.
    Type: Application
    Filed: December 27, 2013
    Publication date: September 18, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Jeroen Van Duren, Minh Huu Le, Minh Anh Nguyen, Sandeep Nijhawan