Patents by Inventor Mizuki Sato

Mizuki Sato has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190310437
    Abstract: An optical cable includes: an optical fiber unit where a plurality of optical fibers are wrapped with a wrapping tape; at least three tensile strength members disposed in parallel with and on an outer side of the optical fiber unit at intervals in a circumferential direction; and a sheath that coats the optical fiber unit and the tensile strength members and that is disposed between the optical fiber unit and the tensile strength members. An inner wall surface of the sheath formed between the optical fiber unit and the tensile strength members protrudes toward a cable center in comparison with an inner wall surface of the sheath where none of the tensile strength members are disposed. A portion of the wrapping tape disposed on the inner wall surface that protrudes toward the cable center is depressed toward the cable center.
    Type: Application
    Filed: November 15, 2017
    Publication date: October 10, 2019
    Applicant: FUJIKURA LTD.
    Inventors: Shinnosuke Sato, Mizuki Isaji, Kouji Tomikawa, Ken Osato
  • Publication number: 20190277572
    Abstract: A phase-change cooling apparatus according to an exemplary aspect of the present invention includes an evaporator a condenser; a refrigerant liquid driving means for circulating the refrigerant liquid; a first piping section configured to connect the evaporator and the condenser; a second piping section configured to connect the condenser to the refrigerant liquid driving means; a third piping section configured to connect the refrigerant liquid driving means to the evaporator; a refrigerant pooling means for pooling the refrigerant liquid, the refrigerant pooling means being located in a flow path constituted by the second piping section; and a fourth piping section, with one end of the fourth piping section connected to the first piping section at a first connecting point, and another end of the fourth piping section connected to the refrigerant pooling means at a second connecting point.
    Type: Application
    Filed: September 15, 2017
    Publication date: September 12, 2019
    Applicant: NEC Corporation
    Inventors: Arihiro MATSUNAGA, Minoru YOSHIKAWA, Masaki CHIBA, Hisato SAKUMA, Masanori SATO, Mizuki WADA, Koichi TODOROKI
  • Publication number: 20190227248
    Abstract: An optical fiber cable includes: a core comprising gathered optical fibers; an inner sheath housing the core; a wire body embedded in the inner sheath; tension members embedded in the inner sheath, wherein the core is interposed between the tension members; a reinforcing sheet that covers the inner sheath; and an outer sheath that covers the reinforcing sheet, wherein in the inner sheath, ti<Ti and to<To are satisfied, where a thickness of a radially inner portion between the core and the wire body is ti, a thickness of a radially inner portion between the core and each of the tension members is Ti, a thickness of a radially outer portion between the wire body and the reinforcing sheet is to, a thickness of a radially outer portion between each of the tension members and the reinforcing sheet is To.
    Type: Application
    Filed: July 31, 2017
    Publication date: July 25, 2019
    Applicants: FUJIKURA LTD., NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Mizuki Isaji, Masatoshi Ohno, Shinnosuke Sato, Kouji Tomikawa, Akira Namazue, Ken Osato, Naoki Nakagawa, Yuji Aoyagi, Shigekatsu Tetsutani
  • Publication number: 20190157374
    Abstract: An object is to provide a display device with a high aperture ratio or a semiconductor device in which the area of an element is large. A channel formation region of a TFT with a multi-gate structure is provided under a wiring that is provided between adjacent pixel electrodes (or electrodes of an element). In addition, a channel width direction of each of a plurality of channel formation regions is parallel to a longitudinal direction of the pixel electrode. In addition, when a channel width is longer than a channel length, the area of the channel formation region can be increased.
    Type: Application
    Filed: January 7, 2019
    Publication date: May 23, 2019
    Inventor: Mizuki SATO
  • Patent number: 10181506
    Abstract: An object is to provide a display device with a high aperture ratio or a semiconductor device in which the area of an element is large. A channel formation region of a TFT with a multi-gate structure is provided under a wiring that is provided between adjacent pixel electrodes (or electrodes of an element). In addition, a channel width direction of each of a plurality of channel formation regions is parallel to a longitudinal direction of the pixel electrode. In addition, when a channel width is longer than a channel length, the area of the channel formation region can be increased.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: January 15, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Mizuki Sato
  • Publication number: 20180145126
    Abstract: An object is to provide a display device with a high aperture ratio or a semiconductor device in which the area of an element is large. A channel formation region of a TFT with a multi-gate structure is provided under a wiring that is provided between adjacent pixel electrodes (or electrodes of an element). In addition, a channel width direction of each of a plurality of channel formation regions is parallel to a longitudinal direction of the pixel electrode. In addition, when a channel width is longer than a channel length, the area of the channel formation region can be increased.
    Type: Application
    Filed: January 19, 2018
    Publication date: May 24, 2018
    Inventor: Mizuki SATO
  • Patent number: 9941346
    Abstract: An object is to provide a display device with a high aperture ratio or a semiconductor device in which the area of an element is large. A channel formation region of a TFT with a multi-gate structure is provided under a wiring that is provided between adjacent pixel electrodes (or electrodes of an element). In addition, a channel width direction of each of a plurality of channel formation regions is parallel to a longitudinal direction of the pixel electrode. In addition, when a channel width is longer than a channel length, the area of the channel formation region can be increased.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: April 10, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Mizuki Sato
  • Publication number: 20170179213
    Abstract: A display device in which light leakage in a monitor element portion is prevented without increasing the number of steps and cost is provided. The display device includes a monitor element for suppressing influence on a light-emitting element due to temperature change and change over time and a TFT for driving the monitor element, in which the TFT for driving the monitor element is provided so as not to overlap the monitor element. Furthermore, the display device includes a first light shielding film and a second light shielding film, in which the first light shielding film is provided so as to overlap a first electrode of the monitor element and the second light shielding film is electrically connect to the first light shielding film through a contact hole formed in an interlayer insulating film. The contact hole is formed so as to surround the outer edge of the first electrode of the monitor element.
    Type: Application
    Filed: March 3, 2017
    Publication date: June 22, 2017
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yasuyuki Takahashi, Mizuki SATO
  • Publication number: 20170141178
    Abstract: An object is to provide a display device with a high aperture ratio or a semiconductor device in which the area of an element is large. A channel formation region of a TFT with a multi-gate structure is provided under a wiring that is provided between adjacent pixel electrodes (or electrodes of an element). In addition, a channel width direction of each of a plurality of channel formation regions is parallel to a longitudinal direction of the pixel electrode. In addition, when a channel width is longer than a channel length, the area of the channel formation region can be increased.
    Type: Application
    Filed: February 1, 2017
    Publication date: May 18, 2017
    Inventor: Mizuki SATO
  • Patent number: 9590153
    Abstract: A display device in which light leakage in a monitor element portion is prevented without increasing the number of steps and cost is provided. The display device includes a monitor element for suppressing influence on a light-emitting element due to temperature change and change over time and a TFT for driving the monitor element, in which the TFT for driving the monitor element is provided so as not to overlap the monitor element. Furthermore, the display device includes a first light shielding film and a second light shielding film, in which the first light shielding film is provided so as to overlap a first electrode of the monitor element and the second light shielding film is electrically connect to the first light shielding film through a contact hole formed in an interlayer insulating film. The contact hole is formed so as to surround the outer edge of the first electrode of the monitor element.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: March 7, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yasuyuki Takahashi, Mizuki Sato
  • Patent number: 9564539
    Abstract: An object is to provide a display device with a high aperture ratio or a semiconductor device in which the area of an element is large. A channel formation region of a TFT with a multi-gate structure is provided under a wiring that is provided between adjacent pixel electrodes (or electrodes of an element). In addition, a channel width direction of each of a plurality of channel formation regions is parallel to a longitudinal direction of the pixel electrode. In addition, when a channel width is longer than a channel length, the area of the channel formation region can be increased.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: February 7, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Mizuki Sato
  • Publication number: 20160118505
    Abstract: An object is to provide a display device with a high aperture ratio or a semiconductor device in which the area of an element is large. A channel formation region of a TFT with a multi-gate structure is provided under a wiring that is provided between adjacent pixel electrodes (or electrodes of an element). In addition, a channel width direction of each of a plurality of channel formation regions is parallel to a longitudinal direction of the pixel electrode. In addition, when a channel width is longer than a channel length, the area of the channel formation region can be increased.
    Type: Application
    Filed: January 7, 2016
    Publication date: April 28, 2016
    Inventor: Mizuki Sato
  • Patent number: 9257451
    Abstract: An object is to provide a display device with a high aperture ratio or a semiconductor device in which the area of an element is large. A channel formation region of a TFT with a multi-gate structure is provided under a wiring that is provided between adjacent pixel electrodes (or electrodes of an element). In addition, a channel width direction of each of a plurality of channel formation regions is parallel to a longitudinal direction of the pixel electrode. In addition, when a channel width is longer than a channel length, the area of the channel formation region can be increased.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: February 9, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Mizuki Sato
  • Patent number: 9236404
    Abstract: An object is to provide a display device with a high aperture ratio or a semiconductor device in which the area of an element is large. A channel formation region of a TFT with a multi-gate structure is provided under a wiring that is provided between adjacent pixel electrodes (or electrodes of an element). In addition, a channel width direction of each of a plurality of channel formation regions is parallel to a longitudinal direction of the pixel electrode. In addition, when a channel width is longer than a channel length, the area of the channel formation region can be increased.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: January 12, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Mizuki Sato
  • Publication number: 20150263049
    Abstract: An object is to provide a display device with a high aperture ratio or a semiconductor device in which the area of an element is large. A channel formation region of a TFT with a multi-gate structure is provided under a wiring that is provided between adjacent pixel electrodes (or electrodes of an element). In addition, a channel width direction of each of a plurality of channel formation regions is parallel to a longitudinal direction of the pixel electrode. In addition, when a channel width is longer than a channel length, the area of the channel formation region can be increased.
    Type: Application
    Filed: June 1, 2015
    Publication date: September 17, 2015
    Inventor: Mizuki Sato
  • Publication number: 20150194447
    Abstract: An object is to provide a display device with a high aperture ratio or a semiconductor device in which the area of an element is large. A channel formation region of a TFT with a multi-gate structure is provided under a wiring that is provided between adjacent pixel electrodes (or electrodes of an element). In addition, a channel width direction of each of a plurality of channel formation regions is parallel to a longitudinal direction of the pixel electrode. In addition, when a channel width is longer than a channel length, the area of the channel formation region can be increased.
    Type: Application
    Filed: March 18, 2015
    Publication date: July 9, 2015
    Inventor: Mizuki Sato
  • Patent number: 9029859
    Abstract: An object is to provide a display device with a high aperture ratio or a semiconductor device in which the area of an element is large. A channel formation region of a TFT with a multi-gate structure is provided under a wiring that is provided between adjacent pixel electrodes (or electrodes of an element). In addition, a channel width direction of each of a plurality of channel formation regions is parallel to a longitudinal direction of the pixel electrode. In addition, when a channel width is longer than a channel length, the area of the channel formation region can be increased.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: May 12, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Mizuki Sato
  • Patent number: 8969859
    Abstract: An object is to provide a display device with a high aperture ratio or a semiconductor device in which the area of an element is large. A channel formation region of a TFT with a multi-gate structure is provided under a wiring that is provided between adjacent pixel electrodes (or electrodes of an element). In addition, a channel width direction of each of a plurality of channel formation regions is parallel to a longitudinal direction of the pixel electrode. In addition, when a channel width is longer than a channel length, the area of the channel formation region can be increased.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: March 3, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Mizuki Sato
  • Publication number: 20140246678
    Abstract: An object is to provide a display device with a high aperture ratio or a semiconductor device in which the area of an element is large. A channel formation region of a TFT with a multi-gate structure is provided under a wiring that is provided between adjacent pixel electrodes (or electrodes of an element). In addition, a channel width direction of each of a plurality of channel formation regions is parallel to a longitudinal direction of the pixel electrode. In addition, when a channel width is longer than a channel length, the area of the channel formation region can be increased.
    Type: Application
    Filed: May 13, 2014
    Publication date: September 4, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Mizuki Sato
  • Publication number: 20140145234
    Abstract: A display device in which light leakage in a monitor element portion is prevented without increasing the number of steps and cost is provided. The display device includes a monitor element for suppressing influence on a light-emitting element due to temperature change and change over time and a TFT for driving the monitor element, in which the TFT for driving the monitor element is provided so as not to overlap the monitor element. Furthermore, the display device includes a first light shielding film and a second light shielding film, in which the first light shielding film is provided so as to overlap a first electrode of the monitor element and the second light shielding film is electrically connect to the first light shielding film through a contact hole formed in an interlayer insulating film. The contact hole is formed so as to surround the outer edge of the first electrode of the monitor element.
    Type: Application
    Filed: January 31, 2014
    Publication date: May 29, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yasuyuki Takahashi, Mizuki Sato