Patents by Inventor Mohamed Sherif

Mohamed Sherif has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11835089
    Abstract: A bearing assembly, particularly refrigerant lubricated bearing assembly, having at least an inner ring and an outer ring, which are rotatable to each other. At least one bearing ring is made from a nitrogen-alloyed stainless steel having a nitrogen (N) content of more than 0.6 wt.-%. A method for manufacturing such a bearing ring is also provided.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: December 5, 2023
    Assignee: Aktiebolaget SKF
    Inventors: Rudolf Hauleitner, Mohamed Sherif
  • Publication number: 20230383788
    Abstract: A bearing assembly, particularly refrigerant lubricated bearing assembly, having at least an inner ring and an outer ring, which are rotatable to each other. At least one bearing ring is made from a nitrogen-alloyed stainless steel having a nitrogen (N) content of more than 0.6 wt.-%. A method for manufacturing such a bearing ring is also provided.
    Type: Application
    Filed: August 9, 2023
    Publication date: November 30, 2023
    Inventors: Rudolf Hauleitner, Mohamed Sherif
  • Publication number: 20220018394
    Abstract: A bearing assembly, particularly refrigerant lubricated bearing assembly, having at least an inner ring and an outer ring, which are rotatable to each other. At least one bearing ring is made from a nitrogen-alloyed stainless steel having a nitrogen (N) content of more than 0.6 wt.-%. A method for manufacturing such a bearing ring is also provided.
    Type: Application
    Filed: July 2, 2021
    Publication date: January 20, 2022
    Inventors: Rudolf Hauleitner, Mohamed Sherif
  • Patent number: 11078559
    Abstract: A steel alloy for bearings contains: 0.6 to 0.9 wt. % carbon, 0.1 to 0.5 wt. % silicon, 0.1 to 1.5 wt. % manganese, 1.5 to 2.0 wt. % chromium, 0.2 to 0.6 wt. % molybdenum, 0 to 0.25 wt. % nickel, 0 to 0.3 wt. % copper, 0 to 0.2 wt. % vanadium, 0 to 0.2 wt. % cobalt, 0 to 0.2 wt. % aluminium, 0 to 0.1 wt. % niobium, 0 to 0.2 wt. % tantalum, 0 to 0.05 wt. % phosphorous, 0 to 0.03 wt. % sulphur, 0 to 0.075 wt. % tin, 0 to 0.075 wt. % antimony, 0 to 0.075 wt. % arsenic, 0 to 0.01 wt. % lead, up to 350 ppm nitrogen, up to 100 ppm oxygen, up to 50 ppm calcium, up to 50 ppm boron, up to 50 ppm titanium, the balance being iron, together with any other unavoidable impurities. Furthermore, the steel alloy contains (i) molybdenum and silicon in a weight ratio of 0.4<Mo/Si<6.0 and (ii) molybdenum and chromium in a weight ratio of 0.1<Mo/Cr<0.4.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: August 3, 2021
    Assignee: AKTIEBOLAGET SKF
    Inventors: Mohamed Sherif, Urszula Alicja Sachadel-Solarek
  • Patent number: 10619230
    Abstract: A near-eutectoid bearing steel having from 0.7 to 0.9 wt. % carbon, from 0.1 to 0.35 wt. % silicon, from 0.7 to 1.2 wt. % manganese, from 1.0 to 2.0 wt. % chromium, from 0.1 to 0.35 wt. % molybdenum, from 0.2 to 0.6 wt. % nickel, from 0.4 to 1.2 wt. % copper, from 0 to 0.15 wt. % vanadium, from 0 to 0.15 wt. % niobium, from 0 to 0.15 wt. % tantalum, from 0 to 0.2 wt. % cobalt, from 0 to 0.1 wt. % aluminum, from 0 to 0.05 wt. % phosphorous, from 0 to 0.03 wt. % sulphur, from 0 to 0.075 wt. % tin, from 0 to 0.075 wt. % antimony, from 0 to 0.04 wt. % arsenic, from 0 to 0.01 wt. % lead, up to 350 ppm nitrogen, up to 100 ppm oxygen, up to 50 ppm calcium, up to 50 ppm boron, up to 50 ppm titanium, the balance iron, together with any other unavoidable impurities.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: April 14, 2020
    Assignee: AKTIEBOLAGET SKF
    Inventors: Mohamed Sherif, Urszula Alicja Sachadel-Solarek, Leif Viskari
  • Publication number: 20200010940
    Abstract: A steel alloy providing from 0.05 to 0.25 wt. % carbon, from 10 to 14 wt. % chromium, from 1.5 to 4 wt. % molybdenum, from 0.3 to 1.2 wt. % vanadium, from 0.3 to 3 wt. % nickel, from 6 to 11 wt. % cobalt from 0.05 to 0.4 wt. % silicon, from 0.1 to 1 wt. % manganese, from 0.02 to 0.06 wt. % niobium, optionally one or more of the following elements from 0 to 2.5 wt. % copper from 0 to 0.1 wt. % aluminum, from 0 to 250 ppm nitrogen, from 0 to 30 ppm boron, and the balance iron, together with any unavoidable impurities, wherein the alloy has a Nieq of greater than 11.5, the Nieq being defined by the formula Nieq=Ni+Co+(0.5×Mn)+(30×C), in wt. %.
    Type: Application
    Filed: June 19, 2019
    Publication date: January 9, 2020
    Inventors: Aidan Kerrigan, John Beswick, Yves Maheo, Alexandre Mondelin, Mohamed Sherif
  • Patent number: 10443132
    Abstract: The method for doping Mg with Ni includes cold-rolling the Mg material and then cold-spraying with Ni powder, and preferably further cold rolling the Ni-coated Mg to achieve the final Ni-doped Mg material. Preferably the Mg material is cold rolled for about 300 passes and the final Ni-doping concentration is about 5 wt. %.
    Type: Grant
    Filed: February 18, 2019
    Date of Patent: October 15, 2019
    Assignee: Kuwait Institute for Scientific Research
    Inventors: Mohamed Sherif Mohamed Mostafa El-Eskandarany, Mohammad E. A. A. Banyan, Fahad Talal Mohammed Ali Salem Alajmi
  • Patent number: 10364148
    Abstract: The nanocomposite system for hydrogen storage is a composite of MgH2 powder with ZrNi5 powder and a combination of Nb2O5, TiC and VC. Preferably, the MgH2 is in nanocrystalline form and the ZrNi5 is significantly in a Friauf-Laves phase. The nanocomposite system is formed by combining the MgH2 powder with the ZrNi5, Nb2O5, TiC and VC, preferably in amounts of 4 wt. % ZrNi5+1 wt. % Nb2O5+0.5 wt. % TiC+0.5 wt. % VC, to form a mixture, and then performing reactive ball milling on the mixture. Preferably, the reactive ball milling is performed for a period of 50 hours.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: July 30, 2019
    Assignee: Kuwait Institute for Scientific Research
    Inventors: Mohamed Sherif Mohamed Mostafa El-Eskandarany, Fahad Talal Mohammed Ali Salem Alajmi, Mohammad E. A. A. Banyan
  • Patent number: 10113221
    Abstract: A steel alloy for a bearing, the alloy having a composition comprising: (a) from 0.5 to 0.9 wt. % carbon, (b) from 1.2 to 1.8 wt. % silicon, (c) from 1.1 to 1.7 wt. % manganese, (d) from 0.7 to 1.3 wt. % chromium, (e) from 0.05 to 0.6 wt. % molybdenum, and optionally any of: (f1) from 0 to 0.25 wt. % nickel, (f2) from 0 to 0.02 wt. % vanadium, (f3) from 0 to 0.05 wt. % aluminium, (f4) from 0 to 0.3 wt. % copper, (f5) from 0 to 0.5 wt. % cobalt, (f6) from 0 to 0.1 wt. % niobium, (f7) from 0 to 0.1 wt. % tantalum, (f7) from 0 to 150 ppm nitrogen, (f8) from 0 to 50 ppm calcium, and (f9) the balance iron, together with any unavoidable impurities, wherein the steel alloy has a microstructure comprising bainitic ferrite and retained austenite, and a hardness (Vickers) of at least 650 HV.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: October 30, 2018
    Assignee: AKTIEBOLAGET SKF
    Inventors: Hanzheng Huang, Mohamed Sherif
  • Publication number: 20180223402
    Abstract: A steel alloy for bearings contains: 0.6 to 0.9 wt. % carbon, 0.1 to 0.5 wt. % silicon, 0.1 to 1.5 wt. % manganese, 1.5 to 2.0 wt. % chromium, 0.2 to 0.6 wt. % molybdenum, 0 to 0.25 wt. % nickel, 0 to 0.3 wt. % copper, 0 to 0.2 wt. % vanadium, 0 to 0.2 wt. % cobalt, 0 to 0.2 wt. % aluminium, 0 to 0.1 wt. % niobium, 0 to 0.2 wt. % tantalum, 0 to 0.05 wt. % phosphorous, 0 to 0.03 wt. % sulphur, 0 to 0.075 wt. % tin, 0 to 0.075 wt. % antimony, 0 to 0.075 wt. % arsenic, 0 to 0.01 wt. % lead, up to 350 ppm nitrogen, up to 100 ppm oxygen, up to 50 ppm calcium, up to 50 ppm boron, up to 50 ppm titanium, the balance being iron, together with any other unavoidable impurities. Furthermore, the steel alloy contains (i) molybdenum and silicon in a weight ratio of 0.4<Mo/Si<6.0 and (ii) molybdenum and chromium in a weight ratio of 0.1<Mo/Cr<0.4.
    Type: Application
    Filed: April 4, 2018
    Publication date: August 9, 2018
    Inventors: Mohamed SHERIF, Urszula Alicja SACHADEL
  • Publication number: 20180202030
    Abstract: A near-eutectoid bearing steel having from 0.7 to 0.9 wt. % carbon, from 0.1 to 0.35 wt. % silicon, from 0.7 to 1.2 wt. % manganese, from 1.0 to 2.0 wt. % chromium, from 0.1 to 0.35 wt. % molybdenum, from 0.2 to 0.6 wt. % nickel, from 0.4 to 1.2 wt. % copper, from 0 to 0.15 wt. % vanadium, from 0 to 0.15 wt. % niobium, from 0 to 0.15 wt. % tantalum, from 0 to 0.2 wt. % cobalt, from 0 to 0.1 wt. % aluminum, from 0 to 0.05 wt. % phosphorous, from 0 to 0.03 wt. % sulphur, from 0 to 0.075 wt. % tin, from 0 to 0.075 wt. % antimony, from 0 to 0.04 wt. % arsenic, from 0 to 0.01 wt. % lead, up to 350 ppm nitrogen, up to 100 ppm oxygen, up to 50 ppm calcium, up to 50 ppm boron, up to 50 ppm titanium, the balance iron, together with any other unavoidable impurities.
    Type: Application
    Filed: January 3, 2018
    Publication date: July 19, 2018
    Inventors: Mohamed Sherif, Urszula Alicja Sachadel-Solarek, Leif Viskari
  • Patent number: 9963766
    Abstract: A steel alloy comprising from: (a) 0.6 to 0.9 wt. % carbon, (b) 0.1 to 0.5 wt. % silicon, (c) 0.1 to 1.5 wt. % manganese, (d) 1.5 to 2.0 wt. % chromium, (e) 0.2 to 0.6 wt. % molybdenum, and up to: (f) 0.25 wt. % nickel, (g) 0.3 wt. % copper, (h) 0.2 wt. % vanadium, (i) 0.2 wt. % cobalt, (j) 0.2 wt. % aluminum, (k) 0.1 wt. % niobium, (l) 0.2 wt. % tantalum, (m) 0.05 wt. % phosphorous, (n) 0.03 wt. % sulphur, (o) 0.075 wt. % tin, (p) 0.075 wt. % antimony, (q) 0.075 wt. % arsenic, (r) 0.01 wt. % lead, (s) 350 ppm nitrogen, (t) 100 ppm oxygen, (u) 50 ppm calcium, (v) 50 ppm boron, (w) 50 ppm titanium, the balance iron, including any other unavoidable impurities, wherein the alloy comprises molybdenum and silicon in a weight ratio of 0.4?Mo/Si?6.0 and comprises molybdenum and chromium in a weight ratio of 0.1?Mo/Cr?0.4.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: May 8, 2018
    Assignee: AKTIEBOLAGET SKF
    Inventors: Urszula Alicja Sachadel-Solarek, Mohamed Sherif
  • Publication number: 20180073113
    Abstract: A steel alloy for a bearing, the alloy having a composition having from 0.04 to 0.1 wt. % carbon, from 10.5 to 13 wt. % chromium, from 1.5 to 3.75 wt. % molybdenum, from 0.3 to 1.2 wt. % vanadium, from 0.3 to 2.0 wt .% nickel, from 6 to 9 wt. % cobalt, from 0.05 to 0.4 wt. % silicon, from 0.2 to 0.8 wt. % manganese, from 0.02 to 0.06 wt. % niobium, from 0 to 2.5 wt. % copper, from 0 to 0.1 wt. % aluminium, from 0 to 250 ppm nitrogen, from 0 to 30 ppm boron, and the balance iron, together with any unavoidable impurities.
    Type: Application
    Filed: September 5, 2017
    Publication date: March 15, 2018
    Inventors: Mohamed Sherif, John Beswick, Staffan Larsson, Yves Maheo
  • Patent number: 9828245
    Abstract: A method for synthesis of MgH2/Ni nanocomposites includes balancing magnesium (Mg) powder in a ball milling container with helium (He) gas atmosphere; adding a plurality of nickel (Ni) milling balls to the container; introducing hydrogen (H2) gas to the container to form a MgH2 powder; milling the MgH2 powder using the Ni-balls as milling media to provide MgH2/Ni nanocomposites. The milling can be high-energy ball milling, e.g., under 50 bar of hydrogen gas atmosphere. The high-energy ball milling can be reactive ball milling (RBM). The method can be used to attach Ni to MgH2 powders to enhance the kinetics of hydrogenation/dehydrogenation of MgH2.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: November 28, 2017
    Assignee: KUWAIT INSTITUTE FOR SCIENTIFIC RESEARCH
    Inventors: Mohamed Sherif Mohamed Mostafa El-Eskandarany, Ehab Abdelhaleem Abdelmotalb Shaaban, Naser Mustafa Abdul Nabi Ali, Fahad Ahmed Jasem Mohamed Aldakheel, Abdullah Ramadhan Abdullah Alkandary
  • Publication number: 20170335440
    Abstract: A steel alloy for a bearing, the alloy having a composition that provides: from 0.8 to 1.0 wt. % carbon, from 0.1 to 0.5 wt. % silicon, from 0.2 to 0.9 wt. % manganese, from 2.0 to 3.3 wt. % chromium, from 0 to 0.4 wt. % molybdenum, from 0 to 0.2 wt. % cobalt, from 0 to 0.2 wt. % iridium, from 0 to 0.2 wt. % rhenium, from 0 to 0.2 wt. % vanadium, from 0 to 0.1 wt. % niobium, from 0 to 0.5 wt. % tungsten, from 0 to 0.2 wt. % nickel, from 0 to 0.4 wt. % copper, from 0 to 0.05 wt. % aluminum, from 0 to 150 ppm nitrogen, and the balance iron, together with any unavoidable impurities.
    Type: Application
    Filed: December 6, 2016
    Publication date: November 23, 2017
    Inventors: Mohamed Sherif, Yuri Kadin
  • Publication number: 20170306464
    Abstract: A bearing component formed from a steel alloy having from 0.7 to 0.9 wt. % carbon, from 0.05 to 0.16 wt. % silicon, from 0.7 to 0.9 wt. % manganese, from 1.4 to 2.0 wt. % chromium, from 0.7 to 1.0 wt. % molybdenum, from 0.03 to 0.15 wt. % vanadium, from 0 to 0.25 wt. % nickel, from 0 to 0.3 wt. % copper, from 0 to 0.2 wt. % cobalt, from 0 to 0.1 wt. % aluminum, from 0 to 0.1 wt. % niobium, from 0 to 0.2 wt. % tantalum, from 0 to 0.025 wt. % phosphorous, from 0 to 0.015 wt. % sulphur, from 0 to 0.075 wt. % tin, from 0 to 0.075 wt. % antimony, from 0 to 0.04 wt. % arsenic, from 0 to 0.002 wt. % lead, up to 350 ppm nitrogen, up to 20 ppm oxygen, up to 50 ppm calcium, up to 30 ppm boron, up to 50 ppm titanium, the balance iron, together with any unavoidable impurities.
    Type: Application
    Filed: November 24, 2015
    Publication date: October 26, 2017
    Inventors: Mohamed Sherif, Urszula Alicja Sachadel
  • Patent number: 9758849
    Abstract: A bearing steel composition contains 0.1 to 0.2 wt % C, 3.25 to 4.25 wt % Cr, 9.5 to 11.5 wt % Mo, 5.75 to 6.75 wt % W, 1.5 to 2.5 wt % V, and 2.5 to 3.5 wt % Ni. A bearing component, such as a rolling element, an inner race or outer race, is formed from the bearing steel composition, for example, by a powder metallurgical technique and then is subjected to a case hardening treatment. The bearing component may have a microstructure composed of martensite, retained austenite and at least one of carbides and/or carbonitrides. The carbon level at the surface of the bearing component may be 0.5 to 1.1 wt %.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: September 12, 2017
    Assignee: AKTIEBOLAGET SKF
    Inventors: Mohamed Sherif, John Beswick
  • Patent number: 9609874
    Abstract: The metallic glassy alloy powders for antibacterial coating are mechanically alloyed mixtures of copper, titanium, and nickel nanoparticles. The nanoparticles are alloyed by ball-milling to form glassy, metallic powders. The alloy preferably has a copper:titanium:nickel atomic percentage ratio of about 50:20:30, referred to herein as Cu50Ti20Ni30. The powdered alloy is applied to a suitable substrate, such as stainless steel medical instruments, by cold spray powder coating. The coated substrate exhibits antibacterial properties compared to an uncoated substrate.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: April 4, 2017
    Inventors: Mohamed Sherif Mohamed Mostafa El-Eskandarany, Ahmed Salem Abdulhadi Aldamier Al-Azmi
  • Patent number: 9546680
    Abstract: A bearing component formed from a steel composition and providing carbon, silicon, manganese, chromium, cobalt, vanadium, and at least one of the following elements sulphur, phosphorous, molybdenum, aluminum, arsenic, tin, antimony, and the balance iron, together with impurities.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: January 17, 2017
    Assignee: AKTIEBOLAGET SKF
    Inventors: John Beswick, Mohamed Sherif
  • Patent number: 9540245
    Abstract: A method for synthesizing nanodiamonds includes high energy ball milling of graphite powder for a period of at least 52 hours at a rotation speed of about 400 rotations per minute to produce nanodiamonds. The ball milling can occur in an inert atmosphere at ambient pressure and room temperature. The nanodiamonds can have a spherical morphology and a particle size distribution ranging from about 1 nanometer to about 10 nanometers.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: January 10, 2017
    Assignee: KUWAIT INSTITUTE FOR SCIENTIFIC RESEARCH
    Inventor: Mohamed Sherif Mohamed Mostafa El-Eskandarany