Patents by Inventor Moris Kori

Moris Kori has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7846840
    Abstract: In one embodiment, a method for forming a tungsten material on a substrate surface is provide which includes positioning a substrate within a deposition chamber, heating the substrate to a deposition temperature, and exposing the substrate sequentially to diborane and a tungsten precursor gas to form a tungsten nucleation layer on the substrate during an atomic layer deposition (ALD) process. The method further provides exposing the substrate to a deposition gas comprising hydrogen gas and the tungsten precursor gas to form a tungsten bulk layer over the tungsten nucleation layer during a chemical vapor deposition (CVD) process. Examples are provided which include ALD and CVD processes that may be conducted in the same deposition chamber or in different deposition chambers.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: December 7, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Moris Kori, Alfred W. Mak, Jeong Soo Byun, Lawrence Chung-Lai Lei, Hua Chung
  • Patent number: 7709385
    Abstract: In one embodiment, a method for forming a tungsten-containing material on a substrate is provided which includes forming a tungsten-containing layer by sequentially exposing a substrate to a processing gas and a tungsten-containing gas during an atomic layer deposition process, wherein the processing gas comprises a boron-containing gas and a nitrogen-containing gas, and forming a tungsten bulk layer over the tungsten-containing layer by exposing the substrate to a deposition gas comprising the tungsten-containing gas and a reactive precursor gas during a chemical vapor deposition process. In one example, the tungsten-containing layer and the tungsten bulk layer are deposited within the same processing chamber.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: May 4, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Ming Xi, Ashok Sinha, Moris Kori, Alfred W. Mak, Xinliang Lu, Ken Kaung Lai, Karl A. Littau
  • Publication number: 20100093170
    Abstract: In one embodiment, a method for forming a tungsten material on a substrate surface is provide which includes positioning a substrate within a deposition chamber, heating the substrate to a deposition temperature, and exposing the substrate sequentially to diborane and a tungsten precursor gas to form a tungsten nucleation layer on the substrate during an atomic layer deposition (ALD) process. The method further provides exposing the substrate to a deposition gas comprising hydrogen gas and the tungsten precursor gas to form a tungsten bulk layer over the tungsten nucleation layer during a chemical vapor deposition (CVD) process. Examples are provided which include ALD and CVD processes that may be conducted in the same deposition chamber or in different deposition chambers.
    Type: Application
    Filed: December 22, 2009
    Publication date: April 15, 2010
    Inventors: Moris Kori, Alfred W. Mak, Jeong Soo Byun, Lawrence Chung-Lai Lei, Hua Chung
  • Patent number: 7674715
    Abstract: In one embodiment, a method for forming a tungsten material on a substrate surface is provide which includes positioning a substrate within a deposition chamber, heating the substrate to a deposition temperature, and exposing the substrate sequentially to diborane and a tungsten precursor gas to form a tungsten nucleation layer on the substrate during an atomic layer deposition (ALD) process. The method further provides exposing the substrate to a deposition gas comprising hydrogen gas and the tungsten precursor gas to form a tungsten bulk layer over the tungsten nucleation layer during a chemical vapor deposition (CVD) process. Examples are provided which include ALD and CVD processes that may be conducted in the same deposition chamber or in different deposition chambers.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: March 9, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Moris Kori, Alfred W. Mak, Jeong Soo Byun, Lawrence Chung-Lai Lei, Hua Chung, Ashok Sinha, Ming Xi
  • Patent number: 7605083
    Abstract: Embodiments of the invention provide methods for depositing tungsten materials. In one embodiment, a method for forming a composite tungsten film is provided which includes positioning a substrate within a process chamber, forming a tungsten nucleation layer on the substrate by subsequently exposing the substrate to a tungsten precursor and a reducing gas containing hydrogen during a cyclic deposition process, and forming a tungsten bulk layer during a plasma-enhanced chemical vapor deposition (PE-CVD) process. The PE-CVD process includes exposing the substrate to a deposition gas containing the tungsten precursor while depositing the tungsten bulk layer over the tungsten nucleation layer. In some example, the tungsten nucleation layer has a thickness of less than about 100 ?, such as about 15 ?. In other examples, a carrier gas containing hydrogen is constantly flowed into the process chamber during the cyclic deposition process.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: October 20, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Ken K. Lai, Jeong Soo Byun, Frederick C. Wu, Ramanujapuran A. Srinivas, Avgerinos Gelatos, Mei Chang, Moris Kori, Ashok K. Sinha, Hua Chung, Hongbin Fang, Alfred W. Mak, Michael X. Yang, Ming Xi
  • Publication number: 20090156004
    Abstract: In one embodiment, a method for forming a tungsten material on a substrate surface is provide which includes positioning a substrate within a deposition chamber, heating the substrate to a deposition temperature, and exposing the substrate sequentially to diborane and a tungsten precursor gas to form a tungsten nucleation layer on the substrate during an atomic layer deposition (ALD) process. The method further provides exposing the substrate to a deposition gas comprising hydrogen gas and the tungsten precursor gas to form a tungsten bulk layer over the tungsten nucleation layer during a chemical vapor deposition (CVD) process. Examples are provided which include ALD and CVD processes that may be conducted in the same deposition chamber or in different deposition chambers.
    Type: Application
    Filed: December 16, 2008
    Publication date: June 18, 2009
    Inventors: MORIS KORI, Alfred W. Mak, Jeong Soo Byun, Lawrence Chung-Lai Lei, Hua Chung
  • Publication number: 20090156003
    Abstract: In one embodiment, a method for forming a tungsten-containing material on a substrate is provided which includes forming a tungsten-containing layer by sequentially exposing a substrate to a processing gas and a tungsten-containing gas during an atomic layer deposition process, wherein the processing gas comprises a boron-containing gas and a nitrogen-containing gas, and forming a tungsten bulk layer over the tungsten-containing layer by exposing the substrate to a deposition gas comprising the tungsten-containing gas and a reactive precursor gas during a chemical vapor deposition process. In one example, the tungsten-containing layer and the tungsten bulk layer are deposited within the same processing chamber.
    Type: Application
    Filed: December 16, 2008
    Publication date: June 18, 2009
    Inventors: MING XI, Ashok Sinha, Moris Kori, Alfred W. Mak, Xinliang Lu, Ken Kaung Lai, Karl A. Littau
  • Patent number: 7465665
    Abstract: In one embodiment, a method for forming a tungsten-containing material on a substrate is provided which includes forming a tungsten-containing layer by sequentially exposing a substrate to a processing gas and a tungsten-containing gas during an atomic layer deposition process, wherein the processing gas comprises a boron-containing gas and a nitrogen-containing gas, and forming a tungsten bulk layer over the tungsten-containing layer by exposing the substrate to a deposition gas comprising the tungsten-containing gas and a reactive precursor gas during a chemical vapor deposition process. In one example, the tungsten-containing layer and the tungsten bulk layer are deposited within the same processing chamber.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: December 16, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Ming Xi, Ashok Sinha, Moris Kori, Alfred W. Mak, Xinliang Lu, Ken Kaung Lai, Karl A. Littau
  • Patent number: 7465666
    Abstract: In one embodiment, a method for forming a tungsten material on a substrate surface is provide which includes positioning a substrate within a deposition chamber, heating the substrate to a deposition temperature, and exposing the substrate sequentially to diborane and a tungsten precursor gas to form a tungsten nucleation layer on the substrate during an atomic layer deposition (ALD) process. The method further provides exposing the substrate to a deposition gas comprising hydrogen gas and the tungsten precursor gas to form a tungsten bulk layer over the tungsten nucleation layer during a chemical vapor deposition (CVD) process. Examples are provided which include ALD and CVD processes that may be conducted in the same deposition chamber or in different deposition chambers.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: December 16, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Moris Kori, Alfred W. Mak, Jeong Soo Byun, Lawrence Chung-Lai Lei, Hua Chung, Ashok Sinha, Ming Xi
  • Publication number: 20080227291
    Abstract: Embodiments of the invention provide methods for depositing tungsten materials. In one embodiment, a method for forming a composite tungsten film is provided which includes positioning a substrate within a process chamber, forming a tungsten nucleation layer on the substrate by subsequently exposing the substrate to a tungsten precursor and a reducing gas containing hydrogen during a cyclic deposition process, and forming a tungsten bulk layer during a plasma-enhanced chemical vapor deposition (PE-CVD) process. The PE-CVD process includes exposing the substrate to a deposition gas containing the tungsten precursor while depositing the tungsten bulk layer over the tungsten nucleation layer. In some example, the tungsten nucleation layer has a thickness of less than about 100 ?, such as about 15 ?. In other examples, a carrier gas containing hydrogen is constantly flowed into the process chamber during the cyclic deposition process.
    Type: Application
    Filed: May 28, 2008
    Publication date: September 18, 2008
    Inventors: KEN K. LAI, Jeong Soo Byun, Frederick C. Wu, Ramanujapuran A. Srinivas, Avgerinos Gelatos, Mei Chang, Moris Kori, Ashok K. Sinha, Hua Chung, Hongbin Fang, Alfred W. Mak, Michael X. Yang, Ming Xi
  • Patent number: 7384867
    Abstract: Methods for the deposition of tungsten films are provided. The methods include depositing a nucleation layer by alternatively adsorbing a tungsten precursor and a reducing gas on a substrate, and depositing a bulk layer of tungsten over the nucleation layer.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: June 10, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Ken K. Lai, Jeong Soo Byun, Frederick C. Wu, Ramanujapuran A. Srinivas, Avgerinos Gelatos, Mei Chang, Moris Kori, Ashok K. Sinha, Hua Chung, Hongbin Fang, Alfred W. Mak, Michael X. Yang, Ming Xi
  • Publication number: 20070254481
    Abstract: In one embodiment, a method for forming a tungsten material on a substrate surface is provide which includes positioning a substrate within a deposition chamber, heating the substrate to a deposition temperature, and exposing the substrate sequentially to diborane and a tungsten precursor gas to form a tungsten nucleation layer on the substrate during an atomic layer deposition (ALD) process. The method further provides exposing the substrate to a deposition gas comprising hydrogen gas and the tungsten precursor gas to form a tungsten bulk layer over the tungsten nucleation layer during a chemical vapor deposition (CVD) process. Examples are provided which include ALD and CVD processes that may be conducted in the same deposition chamber or in different deposition chambers.
    Type: Application
    Filed: June 21, 2007
    Publication date: November 1, 2007
    Inventors: MORIS KORI, Alfred Mak, Jeong Byun, Lawrence Lei, Hua Chung, Ashok Sinha, Ming Xi
  • Publication number: 20070218688
    Abstract: In one embodiment, a method for forming a tungsten-containing material on a substrate is provided which includes forming a tungsten-containing layer by sequentially exposing a substrate to a processing gas and a tungsten-containing gas during an atomic layer deposition process, wherein the processing gas comprises a boron-containing gas and a nitrogen-containing gas, and forming a tungsten bulk layer over the tungsten-containing layer by exposing the substrate to a deposition gas comprising the tungsten-containing gas and a reactive precursor gas during a chemical vapor deposition process. In one example, the tungsten-containing layer and the tungsten bulk layer are deposited within the same processing chamber.
    Type: Application
    Filed: May 15, 2007
    Publication date: September 20, 2007
    Inventors: Ming Xi, Ashok Sinha, Moris Kori, Alfredq Mak, Xinliang Lu, Ken Lai, Karl Littau
  • Patent number: 7235486
    Abstract: In one embodiment, a method for forming a tungsten material on a substrate surface is provide which includes positioning a substrate within a deposition chamber, heating the substrate to a deposition temperature, and exposing the substrate sequentially to a first reducing gas and a tungsten precursor gas to form a tungsten nucleation layer on the substrate during an atomic layer deposition (ALD) process. The method may further provide exposing the substrate to a deposition gas comprising a second reducing gas and the tungsten precursor gas to form a tungsten bulk layer on the tungsten nucleation layer during a chemical vapor deposition (CVD) process. Examples include that the ALD and CVD processes are conducted in the same deposition chamber or in different deposition chambers.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: June 26, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Moris Kori, Alfred W. Mak, Jeong Soo Byun, Lawrence Chung-Lai Lei, Hua Chung, Ashok Sinha, Ming Xi
  • Patent number: 7220673
    Abstract: In one embodiment, a method for forming a tungsten-containing material on a substrate is provided which includes forming a tungsten nucleation layer by sequentially exposing a substrate to a boron-containing gas and a tungsten-containing gas within a processing chamber during an atomic layer deposition process, and forming a tungsten bulk layer on the tungsten nucleation layer by exposing the substrate to a processing gas that contains the tungsten-containing gas and a reactive precursor gas within another processing chamber during a chemical vapor deposition process. In one example, the tungsten nucleation layer is deposited on a dielectric material, such as silicon oxide. In another example, the tungsten nucleation layer is deposited on a barrier material, such as titanium or titanium nitride. Other examples provide that the tungsten nucleation layer and the tungsten bulk layer are deposited in the same processing chamber.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: May 22, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Ming Xi, Ashok Sinha, Moris Kori, Alfred W. Mak, Xinliang Lu, Ken Kaung Lai, Karl A. Littau
  • Publication number: 20060292874
    Abstract: In one embodiment, a method for forming a tungsten material on a substrate surface is provide which includes positioning a substrate within a deposition chamber, heating the substrate to a deposition temperature, and exposing the substrate sequentially to a first reducing gas and a tungsten precursor gas to form a tungsten nucleation layer on the substrate during an atomic layer deposition (ALD) process. The method may further provide exposing the substrate to a deposition gas comprising a second reducing gas and the tungsten precursor gas to form a tungsten bulk layer on the tungsten nucleation layer during a chemical vapor deposition (CVD) process. Examples include that the ALD and CVD processes are conducted in the same deposition chamber or in different deposition chambers.
    Type: Application
    Filed: August 29, 2006
    Publication date: December 28, 2006
    Inventors: Moris Kori, Alfred Mak, Jeong Byun, Lawrence Lei, Hua Chung, Ashok Sinha, Ming Xi
  • Publication number: 20060264031
    Abstract: In one embodiment, a method for forming a tungsten-containing material on a substrate is provided which includes forming a tungsten nucleation layer by sequentially exposing a substrate to a boron-containing gas and a tungsten-containing gas within a processing chamber during an atomic layer deposition process, and forming a tungsten bulk layer on the tungsten nucleation layer by exposing the substrate to a processing gas that contains the tungsten-containing gas and a reactive precursor gas within another processing chamber during a chemical vapor deposition process. In one example, the tungsten nucleation layer is deposited on a dielectric material, such as silicon oxide. In another example, the tungsten nucleation layer is deposited on a barrier material, such as titanium or titanium nitride. Other examples provide that the tungsten nucleation layer and the tungsten bulk layer are deposited in the same processing chamber.
    Type: Application
    Filed: August 2, 2006
    Publication date: November 23, 2006
    Inventors: Ming Xi, Ashok Sinha, Moris Kori, Alfred Mak, Xinliang Lu, Ken Lai, Karl Littau
  • Patent number: 7115494
    Abstract: A method and system to reduce the resistance of refractory metal layers by controlling the presence of fluorine contained therein. The present invention is based upon the discovery that when employing ALD techniques to form refractory metal layers on a substrate, the carrier gas employed impacts the presence of fluorine in the resulting layer. As a result, the method features chemisorbing, onto the substrate, alternating monolayers of a first compound and a second compound, with the second compound having fluorine atoms associated therewith, with each of the first and second compounds being introduced into the processing chamber along with a carrier gas to control a quantity of the fluorine atoms associated with the monolayer of the second compound.
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: October 3, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Ashok Sinha, Ming Xi, Moris Kori, Alfred W. Mak, Jeong Soo Byun, Lawrence Chung-Lai Lei, Hua Chung
  • Patent number: 7101795
    Abstract: A method and system to form a refractory metal layer on a substrate features nucleating a substrate using sequential deposition techniques in which the substrate is serially exposed to first and second reactive gases followed by forming a layer, employing vapor deposition, to subject the nucleation layer to a bulk deposition of a compound contained in one of the first and second reactive gases.
    Type: Grant
    Filed: October 3, 2000
    Date of Patent: September 5, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Ming Xi, Ashok Sinha, Moris Kori, Alfred W. Mak, Xinliang Lu, Ken Kaung Lai, Karl A. Littau
  • Publication number: 20060128132
    Abstract: A method and system to reduce the resistance of refractory metal layers by controlling the presence of fluorine contained therein. The present invention is based upon the discovery that when employing ALD techniques to form refractory metal layers on a substrate, the carrier gas employed impacts the presence of fluorine in the resulting layer. As a result, the method features chemisorbing, onto the substrate, alternating monolayers of a first compound and a second compound, with the second compound having fluorine atoms associated therewith, with each of the first and second compounds being introduced into the processing chamber along with a carrier gas to control a quantity of the fluorine atoms associated with the monolayer of the second compound.
    Type: Application
    Filed: January 24, 2006
    Publication date: June 15, 2006
    Inventors: Ashok Sinha, Ming Xi, Moris Kori, Alfred Mak, Jeong Byun, Lawrence Lei, Hua Chung