Patents by Inventor Morten Fischer

Morten Fischer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240005693
    Abstract: Aspects of this disclosure relate to a biometric sensing device that combines sensing with an actuator for two way communication between a finger on a surface and the device. The sensor can also function as an actuator. A finger can be authenticated based on an image of the finger generated by the sensor and also based on a response to energy delivered to the finger by the actuator. Two way communication can provide more robust authentication than fingerprint sensing alone.
    Type: Application
    Filed: March 22, 2023
    Publication date: January 4, 2024
    Inventors: Butrus T. Khuri-Yakub, Morten Fischer Rasmussen, Gerard Touma, John N. Irwin, III
  • Patent number: 11828884
    Abstract: A transducer array (802) includes at least one 1D array of transducing elements (804). The at least one 1D array of transducing elements includes a plurality of transducing elements (904). A first of the plurality of transducing elements has a first apodization and a second of the plurality of transducing elements has a second apodization. The first apodization and the second apodization are different. The transducer array further includes at least one electrically conductive element (910) in electrical communication with each of the plurality of transducing elements. The transducer array further includes at least one electrical contact (906) in electrical communication with the at least one electrically conductive element. The at least one electrical contact concurrently addresses the plurality of transducing elements through the at least one electrically conductive element.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: November 28, 2023
    Assignee: BK Medical Aps
    Inventors: Thomas Lehrmann Christiansen, Morten Fischer Rasmussen, Erik Vilain Thomsen, Jorgen Jensen
  • Patent number: 11803728
    Abstract: An acoustic biometric touch scanner device and method is disclosed. In one aspect, an acoustic fingerprint sensing device includes an array of ultrasonic transducers configured to transmit an ultrasound signal having a frequency in a range from 50 megahertz (MHz) to 500 MHz. The acoustic fingerprint ultrasonic transducers include a piezoelectric film. The acoustic fingerprint sensing device further includes a receiving surface configured to receive a finger. The acoustic fingerprint sensing device further includes a processor configured to generate an image of at least a portion of a fingerprint of the finger based on a reflection of the ultrasound signal from the finger.
    Type: Grant
    Filed: December 29, 2021
    Date of Patent: October 31, 2023
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Morten Fischer Rasmussen, Gerard Touma, Butrus T. Khuri-Yakub
  • Patent number: 11645862
    Abstract: Aspects of this disclosure relate to a biometric sensing device that combines sensing with an actuator for two way communication between a finger on a surface and the device. The sensor can also function as an actuator. A finger can be authenticated based on an image of the finger generated by the sensor and also based on a response to energy delivered to the finger by the actuator. Two way communication can provide more robust authentication than fingerprint sensing alone.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: May 9, 2023
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Orchid Sound Technologies LLC
    Inventors: Butrus T. Khuri-Yakub, Morten Fischer Rasmussen, Gerard Touma, John N. Irwin, III
  • Publication number: 20220314034
    Abstract: Features for high intensity focused ultrasound (HIFU) are described. The application of HIFU for ablating tissue may be monitored in real time by imaging bubbles generated during HIFU. A single transducer array may be used by fast switching between imaging and HIFU. For imaging, the array or portions thereof may be used in receive only mode to locate bubbles generated by the HIFU. The application of HIFU, such as location and/or intensity, may be adjusted based on information from the imaging of the bubbles. Physicians and/or others may use these systems and methods to monitor HIFU procedures in real-time for optimal ablation of target tissue with minimal damage to healthy tissue.
    Type: Application
    Filed: February 23, 2022
    Publication date: October 6, 2022
    Inventors: Ji Hoon Jang, George Quintin Stedman, Morten Fischer Rasmussen, Arif Sanli Ergun, Butrus T. Khuri-Yakub
  • Publication number: 20220237941
    Abstract: An acoustic biometric touch scanner device and method is disclosed. In one aspect, an acoustic fingerprint sensing device includes an array of ultrasonic transducers configured to transmit an ultrasound signal having a frequency in a range from 50 megahertz (MHz) to 500 MHz. The acoustic fingerprint ultrasonic transducers include a piezoelectric film. The acoustic fingerprint sensing device further includes a receiving surface configured to receive a finger. The acoustic fingerprint sensing device further includes a processor configured to generate an image of at least a portion of a fingerprint of the finger based on a reflection of the ultrasound signal from the finger.
    Type: Application
    Filed: December 29, 2021
    Publication date: July 28, 2022
    Inventors: Morten Fischer Rasmussen, Gerard Touma, Butrus T. Khuri-Yakub
  • Patent number: 11288479
    Abstract: An acoustic biometric touch scanner device and method is disclosed. In one aspect, an acoustic fingerprint sensing device includes an array of ultrasonic transducers configured to transmit an ultrasound signal having a frequency in a range from 50 megahertz (MHz) to 500 MHz. The acoustic fingerprint ultrasonic transducers include a piezoelectric film. The acoustic fingerprint sensing device further includes a receiving surface configured to receive a finger. The acoustic fingerprint sensing device further includes a processor configured to generate an image of at least a portion of a fingerprint of the finger based on a reflection of the ultrasound signal from the finger.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: March 29, 2022
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Morten Fischer Rasmussen, Gerard Touma, Butrus T. Khuri-Yakub
  • Patent number: 11273331
    Abstract: Features for high intensity focused ultrasound (HIFU) are described. The application of HIFU for ablating tissue may be monitored in real time by imaging bubbles generated during HIFU. A single transducer array may be used by fast switching between imaging and HIFU. For imaging, the array or portions thereof may be used in receive only mode to locate bubbles generated by the HIFU. The application of HIFU, such as location and/or intensity, may be adjusted based on information from the imaging of the bubbles. Physicians and/or others may use these systems and methods to monitor HIFU procedures in real-time for optimal ablation of target tissue with minimal damage to healthy tissue.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: March 15, 2022
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ji Hoon Jang, George Quintin Stedman, Morten Fischer Rasmussen, Arif Sanli Ergun, Butrus T. Khuri-Yakub
  • Publication number: 20210311179
    Abstract: A transducer array (802) includes at least one 1D array of transducing elements (804). The at least one 1D array of transducing elements includes a plurality of transducing elements (904). A first of the plurality of transducing elements has a first apodization and a second of the plurality of transducing elements has a second apodization. The first apodization and the second apodization are different. The transducer array further includes at least one electrically conductive element (910) in electrical communication with each of the plurality of transducing elements. The transducer array further includes at least one electrical contact (906) in electrical communication with the at least one electrically conductive element. The at least one electrical contact concurrently addresses the plurality of transducing elements through the at least one electrically conductive element.
    Type: Application
    Filed: June 17, 2021
    Publication date: October 7, 2021
    Applicant: B-K Medical Aps
    Inventors: Thomas Lehrmann Christiansen, Morten Fischer Rasmussen, Erik Vilain Thomsen, Jorgen Jensen
  • Publication number: 20210295005
    Abstract: Aspects of this disclosure relate to a biometric sensing device that combines sensing with an actuator for two way communication between a finger on a surface and the device. The sensor can also function as an actuator. A finger can be authenticated based on an image of the finger generated by the sensor and also based on a response to energy delivered to the finger by the actuator. Two way communication can provide more robust authentication than fingerprint sensing alone.
    Type: Application
    Filed: May 12, 2021
    Publication date: September 23, 2021
    Inventors: Butrus T. Khuri-Yakub, Morten Fischer Rasmussen, Gerard Touma, John N. Irwin, III
  • Patent number: 11067677
    Abstract: A transducer array (802) includes at least one 1D array of transducing elements (804). The at least one 1D array of transducing elements includes a plurality of transducing elements (904). A first of the plurality of transducing elements has a first apodization and a second of the plurality of transducing elements has a second apodization. The first apodization and the second apodization are different. The transducer array further includes at least one electrically conductive element (910) in electrical communication with each of the plurality of transducing elements. The transducer array further includes at least one electrical contact (906) in electrical communication with the at least one electrically conductive element. The at least one electrical contact concurrently addresses the plurality of transducing elements through the at least one electrically conductive element.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: July 20, 2021
    Assignee: BK MEDICAL APS
    Inventors: Thomas Lehrmann Christiansen, Morten Fischer Rasmussen, Erik Vilain Thomsen, Jorgen Jensen
  • Patent number: 11023704
    Abstract: Aspects of this disclosure relate to a biometric sensing device that combines sensing with an actuator for two way communication between a finger on a surface and the device. The sensor can also function as an actuator. A finger can be authenticated based on an image of the finger generated by the sensor and also based on a response to energy delivered to the finger by the actuator. Two way communication can provide more robust authentication than fingerprint sensing alone.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: June 1, 2021
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Orchid Sound Technologies LLC
    Inventors: Butrus T. Khuri-Yakub, Morten Fischer Rasmussen, Gerard Touma, John N. Irwin, III
  • Patent number: 10846501
    Abstract: An acoustic biometric touch scanner device and method is disclosed. In one aspect, an acoustic fingerprint sensing device includes an array of ultrasonic transducers configured to transmit an ultrasound signal having a frequency in a range from 50 megahertz (MHz) to 500 MHz. The acoustic fingerprint ultrasonic transducers include a piezoelectric film. The acoustic fingerprint sensing device further includes a receiving surface configured to receive a finger. The acoustic fingerprint sensing device further includes a processor configured to generate an image of at least a portion of a fingerprint of the finger based on a reflection of the ultrasound signal from the finger.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: November 24, 2020
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Morten Fischer Rasmussen, Gerard Touma, Butrus T. Khuri-Yakub
  • Publication number: 20200254285
    Abstract: Features for high intensity focused ultrasound (HIFU) are described. The application of HIFU for ablating tissue may be monitored in real time by imaging bubbles generated during HIFU. A single transducer array may be used by fast switching between imaging and HIFU. For imaging, the array or portions thereof may be used in receive only mode to locate bubbles generated by the HIFU. The application of HIFU, such as location and/or intensity, may be adjusted based on information from the imaging of the bubbles. Physicians and/or others may use these systems and methods to monitor HIFU procedures in real-time for optimal ablation of target tissue with minimal damage to healthy tissue.
    Type: Application
    Filed: February 10, 2020
    Publication date: August 13, 2020
    Inventors: Ji Hoon Jang, George Quintin Stedman, Morten Fischer Rasmussen, Arif Sanli Ergun, Butrus T. Khuri-Yakub
  • Publication number: 20200257874
    Abstract: Aspects of this disclosure relate to a biometric sensing device that combines sensing with an actuator for two way communication between a finger on a surface and the device. The sensor can also function as an actuator. A finger can be authenticated based on an image of the finger generated by the sensor and also based on a response to energy delivered to the finger by the actuator. Two way communication can provide more robust authentication than fingerprint sensing alone.
    Type: Application
    Filed: March 6, 2020
    Publication date: August 13, 2020
    Inventors: Butrus T. Khuri-Yakub, Morten Fischer Rasmussen, Gerard Touma, John N. Irwin, III
  • Patent number: 10691912
    Abstract: Aspects of this disclosure relate to a biometric sensing device that includes a sensing device and an integrated optical system for authentication. For instance, the sensing device can be an ultrasonic sensing device that can generate an image of a fingerprint and the optical system can transmit light to a finger through the ultrasonic scanning device. In some instances, the acoustic biometric sensing device can generate a liveness parameter associated with a finger based on a reflection of the light.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: June 23, 2020
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Orchid Sound Technologies LLC
    Inventors: Butrus T. Khuri-Yakub, Morten Fischer Rasmussen, Gerard Touma, John N. Irwin, III
  • Publication number: 20200175241
    Abstract: An acoustic biometric touch scanner device and method is disclosed. In one aspect, an acoustic fingerprint sensing device includes an array of ultrasonic transducers configured to transmit an ultrasound signal having a frequency in a range from 50 megahertz (MHz) to 500 MHz. The acoustic fingerprint ultrasonic transducers include a piezoelectric film. The acoustic fingerprint sensing device further includes a receiving surface configured to receive a finger. The acoustic fingerprint sensing device further includes a processor configured to generate an image of at least a portion of a fingerprint of the finger based on a reflection of the ultrasound signal from the finger.
    Type: Application
    Filed: October 23, 2019
    Publication date: June 4, 2020
    Inventors: Morten Fischer Rasmussen, Gerard Touma, Butrus T. Khuri-Yakub
  • Patent number: 10592718
    Abstract: Aspects of this disclosure relate to a biometric sensing device that combines sensing with an actuator for two way communication between a finger on a surface and the device. The sensor can also function as an actuator. A finger can be authenticated based on an image of the finger generated by the sensor and also based on a response to energy delivered to the finger by the actuator. Two way communication can provide more robust authentication than fingerprint sensing alone.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: March 17, 2020
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Orchid Sound Technologies LLC
    Inventors: Butrus T. Khuri-Yakub, Morten Fischer Rasmussen, Gerard Touma, John N. Irwin, III
  • Patent number: 10489627
    Abstract: An acoustic biometric touch scanner device and method is disclosed. In one aspect, an acoustic fingerprint sensing device includes an array of ultrasonic transducers configured to transmit an ultrasound signal having a frequency in a range from 50 megahertz (MHz) to 500 MHz. The acoustic fingerprint ultrasonic transducers include a piezoelectric film. The acoustic fingerprint sensing device further includes a receiving surface configured to receive a finger. The acoustic fingerprint sensing device further includes a processor configured to generate an image of at least a portion of a fingerprint of the finger based on a reflection of the ultrasound signal from the finger.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: November 26, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Morten Fischer Rasmussen, Gerard Touma, Butrus T. Khuri-Yakub
  • Publication number: 20190265344
    Abstract: A transducer array (802) includes at least one 1D array of transducing elements (804). The at least one 1D array of transducing elements includes a plurality of transducing elements (904). A first of the plurality of transducing elements has a first apodization and a second of the plurality of transducing elements has a second apodization. The first apodization and the second apodization are different. The transducer array further includes at least one electrically conductive element (910) in electrical communication with each of the plurality of transducing elements. The transducer array further includes at least one electrical contact (906) in electrical communication with the at least one electrically conductive element. The at least one electrical contact concurrently addresses the plurality of transducing elements through the at least one electrically conductive element.
    Type: Application
    Filed: May 14, 2019
    Publication date: August 29, 2019
    Applicant: B-K Medical Aps
    Inventors: Thomas Lehrmann Christiansen, Morten Fischer Rasmussen, Erik Vilain Thomsen, Jorgen Jensen