Patents by Inventor Morten Ibsen

Morten Ibsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8743454
    Abstract: An optical amplifier includes at least one pump source and an optical fiber cable which includes an amplifying optical fiber and a pump optical fiber that are defined by respective lengths. The amplifying optical fiber and the pump optical fiber are coated with a common coating along a portion of their respective lengths, and the fibers are in optical contact with each other along a coating length within the common coating. The common coating has a refractive index which is lower than a refractive index of a cladding material of the pump optical fiber. The fibers are made substantially from glass. The amplifying optical fiber includes a core and a cladding, and is doped with a rare earth dopant. The pump optical fiber is defined by a first end and a second end, the first end of the pump optical fiber being connected to the pump source.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: June 3, 2014
    Assignee: SPI Lasers UK Ltd
    Inventors: Anatoly Borisovich Grudinin, Dave Neil Payne, Paul William Turner, Lars Johan Albinsson Nilsson, Michael Nickolaos Zervas, Morten Ibsen, Michael Kevan Durkin
  • Publication number: 20120314279
    Abstract: An optical amplifier includes at least one pump source and an optical fibre cable which includes an amplifying optical fibre and a pump optical fibre that are defined by respective lengths. The amplifying optical fibre and the pump optical fibre are coated with a common coating along a portion of their respective lengths, and the fibres are in optical contact with each other along a coating length within the common coating. The common coating has a refractive index which is lower than a refractive index of a cladding material of the pump optical fibre. The fibres are made substantially from glass. The amplifying optical fibre includes a core and a cladding, and is doped with a rare earth dopant. The pump optical fibre is defined by a first end and a second end, the first end of the pump optical fibre being connected to the pump source.
    Type: Application
    Filed: August 21, 2012
    Publication date: December 13, 2012
    Inventors: Anatoly Borisovich Grudinin, Dave Neil Payne, Paul William Turner, Lars Johan Albinsson Nilsson, Michael Nickolaos Zervas, Morten Ibsen, Michael Kevan Durkin
  • Patent number: 8270070
    Abstract: An optical fiber arrangement has at least two optical fiber sections, each optical fiber section defining an outside longitudinally extending surface. The outside longitudinally extending surfaces are in optical contact with each other. The invention further provides for an amplifying optical device have an optical fiber arrangement as just described, and a pump source. The amplifying optical device is configured such that the pump source illuminates the amplifying optical fiber. A amplifying arrangement is also disclosed. The amplifying arrangement includes a plurality of amplifying optical devices as just described, and each amplifier also has at least one input fiber and a first multiplexer connected to the input fiber. Each amplifier is configured such that at least one of the amplifying optical fibers is connected to the first multiplexer. The amplifying arrangement also has a second multiplexer connected to each of the first multiplexers.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: September 18, 2012
    Assignee: SPI Lasers UK Ltd
    Inventors: Anatoly Borisovich Grudinin, Dave Neil Payne, Paul William Turner, Lars Johan Albinsson Nilsson, Michael Nickolaos Zervas, Morten Ibsen, Michael Kevan Durkin
  • Publication number: 20100188734
    Abstract: An optical fibre arrangement has at least two optical fibre sections, each optical fibre section defining an outside longitudinally extending surface. The outside longitudinally extending surfaces are in optical contact with each other. The invention further provides for an amplifying optical device have an optical fibre arrangement as just described, and a pump source. The amplifying optical device is configured such that the pump source illuminates the amplifying optical fibre. A amplifying arrangement is also disclosed. The amplifying arrangement includes a plurality of amplifying optical devices as just described, and each amplifier also has at least one input fibre and a first multiplexer connected to the input fibre. Each amplifier is configured such that at least one of the amplifying optical fibres is connected to the first multiplexer. The amplifying arrangement also has a second multiplexer connected to each of the first multiplexers.
    Type: Application
    Filed: February 8, 2010
    Publication date: July 29, 2010
    Inventors: Anatoly Borisovich Grudinin, Dave Neil Payne, Paul William Turner, Lars Johan Albinsson Nilsson, Michael Nickolaos Zervas, Morten Ibsen, Michael Kevan Durkin
  • Patent number: 7660034
    Abstract: An optical fiber arrangement has at least two optical fiber sections, each optical fiber section defining an outside longitudinally extending surface. The outside longitudinally extending surfaces are in optical contact with each other. The invention further provides for an amplifying optical device have an optical fiber arrangement as just described, and a pump source. The amplifying optical device is configured such that the pump source illuminates the amplifying optical fiber. A amplifying arrangement is also disclosed. The amplifying arrangement includes a plurality of amplifying optical devices as just described, and each amplifier also has at least one input fiber and a first multiplexer connected to the input fiber. Each amplifier is configured such that at least one of the amplifying optical fibers is connected to the first multiplexer. The amplifying arrangement also has a second multiplexer connected to each of the first multiplexers.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: February 9, 2010
    Assignee: SPI Lasers UK Ltd.
    Inventors: Anatoly Borisovich Grudinin, Dave Neil Payne, Paul William Turner, Lars Johan Albinsson Nilsson, Michael Nickolaos Zervas, Morten Ibsen, Michael Kevan Durkin
  • Publication number: 20080174857
    Abstract: An optical fibre arrangement has at least two optical fibre sections, each optical fibre section defining an outside longitudinally extending surface. The outside longitudinally extending surfaces are in optical contact with each other. The invention further provides for an amplifying optical device have an optical fibre arrangement as just described, and a pump source. The amplifying optical device is configured such that the pump source illuminates the amplifying optical fibre. A amplifying arrangement is also disclosed. The amplifying arrangement includes a plurality of amplifying optical devices as just described, and each amplifier also has at least one input fibre and a first multiplexer connected to the input fibre. Each amplifier is configured such that at least one of the amplifying optical fibres is connected to the first multiplexer. The amplifying arrangement also has a second multiplexer connected to each of the first multiplexers.
    Type: Application
    Filed: April 19, 2007
    Publication date: July 24, 2008
    Inventors: Anatoly Borisovich Grudinin, Dave Neil Payne, Paul William Turner, Lars Johan Albinsson Nilsson, Michael Nickolaos Zervas, Morten Ibsen, Michael Kevan Durkin
  • Patent number: 7233607
    Abstract: A source of pulses of coherent radiation at a wavelength of approximately 1 ?m, comprises a pump source for producing pump light; a laser cavity comprising an Yb3+-doped gain medium arranged to receive the pump light, the laser cavity being modelocked to generate laser pulses at a defined repetition rate; a pulse detector arranged to generate a pulse selection signal indicative of the repetition rate; a pulse selector arranged to reduce the repetition rate of the laser pulses responsive to the pulse selection signal from the pulse detector by passing only selected ones of the laser pulses; and at least one optical amplifier for amplifying the laser pulses of reduced repetition rate. The at least one optical amplifier can be configured for chirped or parabolic pulse amplification.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: June 19, 2007
    Assignee: University of Southampton
    Inventors: David J Richardson, Lars Johan Albinsson Nilsson, Laurent Lefort, Jonathan Hugh Vaughan Price, Andrew Malinowski, Morten Ibsen
  • Patent number: 7221822
    Abstract: An optical fiber arrangement has at least two optical fiber sections, each optical fiber section defining an outside longitudinally extending surface. The outside longitudinally extending surfaces are in optical contact with each other. The invention further provides for an amplifying optical device have an optical fiber arrangement as just described, and a pump source. The amplifying optical device is configured such that the pump source illuminates the amplifying optical fiber. A amplifying arrangement is also disclosed. The amplifying arrangement includes a plurality of amplifying optical devices as just described, and each amplifier also has at least one input fiber and a first multiplexer connected to the input fiber. Each amplifier is configured such that at least one of the amplifying optical fibers is connected to the first multiplexer. The amplifying arrangement also has a second multiplexer connected to each of the first multiplexers.
    Type: Grant
    Filed: November 29, 2004
    Date of Patent: May 22, 2007
    Assignee: SPI Lasers UK Ltd
    Inventors: Anatoly Borisovich Grudinin, Dave Neil Payne, Paul William Turner, Lars Johan Albinsson Nilsson, Michael Nickolaos Zervas, Morten Ibsen, Michael Kevan Durkin
  • Patent number: 7003180
    Abstract: Apparatus for providing timing jitter tolerant optical modulation of a first signal by a second signal, the first signal having a first wavelength, the second signal including a plurality of second signal pulses having a second pulse shape and a second wavelength. The apparatus includes a first signal input port, a second signal input port, a coupler, a grating and a non-linear optical device. The apparatus is configured to direct the second signal at the second signal input port to the non-linear optical device via the coupler and the grating, and to direct the first signal at the first signal input port to the non-linear optical device. The grating is a superstructured fibre Bragg grating that converts the second signal pulses into intermediary pulses each having an intermediary pulse shape. The intermediary pulse shape is such that it provides a switching window within the non-linear optical device.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: February 21, 2006
    Assignee: The University of Southampton
    Inventors: David John Richardson, Ju Han Lee, Morten Ibsen, Periklis Petropoulos, Peh Choing Teh
  • Patent number: 6993258
    Abstract: A WDM transmitter comprising an array of M pump lasers multiplexed by an M×N multiplexer, in the form of a coupler, and used to feed an array of N optically pumped fiber lasers emitting at wavelengths ?1, ?2, . . . ?N. The parameter M determines the number of pump lasers as well as the number of inputs of the pump-multiplexing coupler and can be smaller or equal to parameter N that determines the number of optically pumped lasers. The fiber laser outputs are passed through N isolators before entering N modulators were the signals are monolithically modulated. The outputs of the modulators are passed through an array of N tunable attenuators. Finally all the individual channel outputs are recombined into a single output in a combiner. The output will typically lead to an optical network. The proposed architecture may also be used for optical amplifiers, especially fiber-based optical amplifiers.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: January 31, 2006
    Assignee: University of Southampton
    Inventors: David Neil Payne, Michael Nickolaos Zervas, Morten Ibsen
  • Patent number: 6991891
    Abstract: A method of fabricating a distributed feedback optical fiber laser, comprises the step of exposing an optical fiber (20) to a transverse light beam (30) to form a grating structure in a section of the optical fiber, the writing light beam being polarized in a direction not parallel to the axis of the section (10) of optical fiber (20).
    Type: Grant
    Filed: October 16, 2000
    Date of Patent: January 31, 2006
    Assignee: University of Southampton
    Inventors: Richard Ian Laming, Michael Nickolaos Zervas, Sze Yun Set, Morten Ibsen, Erland Ronnekleiv, Shinji Yamashita
  • Publication number: 20050190802
    Abstract: A source of pulses of coherent radiation at a wavelength of approximately 1 ?m, comprises a pump source for producing pump light; a laser cavity comprising an Yb3+-doped gain medium arranged to receive the pump light, the laser cavity being modelocked to generate laser pulses at a defined repetition rate; a pulse detector arranged to generate a pulse selection signal indicative of the repetition rate; a pulse selector arranged to reduce the repetition rate of the laser pulses responsive to the pulse selection signal from the pulse detector by passing only selected ones of the laser pulses; and at least one optical amplifier for amplifying the laser pulses of reduced repetition rate. The at least one optical amplifier can be configured for chirped or parabolic pulse amplification.
    Type: Application
    Filed: May 3, 2005
    Publication date: September 1, 2005
    Inventors: David Richardson, Lars Nilsson, Laurent Lefort, Jonathan Price, Andrew Malinowski, Morten Ibsen
  • Patent number: 6917631
    Abstract: A source of pulses of coherent radiation at a wavelength of approximately 1 ?m, comprises a pump source for producing pump light, a laser cavity comprising an Yb3+-doped gain medium arranged to receive the pump light, the laser cavity being modelocked to generate laser pulses at a defined repetition rate; a pulse detector arranged to generate a pulse selection signal indicative of the repetition rate; a pulse selector arranged to reduce the repetition rate of the laser pulses responsive to the pulse selection signal from the pulse detector by passing only selected ones of the laser pulses; and at least one optical amplifier for amplifying the laser pulses of reduced repetition rate. The at least one optical amplifier can be configured for chirped or parabolic pulse amplification.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: July 12, 2005
    Assignee: University of Southampton
    Inventors: David J Richardson, Lars Johan Albinsson Nilsson, Laurent Lefort, Jonathan Hugh Vaughan Price, Andrew Malinowski, Morten Ibsen
  • Publication number: 20050105866
    Abstract: An optical fibre arrangement has at least two optical fibre sections, each optical fibre section defining an outside longitudinally extending surface. The outside longitudinally extending surfaces are in optical contact with each other. The invention further provides for an amplifying optical device have an optical fibre arrangement as just described, and a pump source. The amplifying optical device is configured such that the pump source illuminates the amplifying optical fibre. A amplifying arrangement is also disclosed. The amplifying arrangement includes a plurality of amplifying optical devices as just described, and each amplifier also has at least one input fibre and a first multiplexer connected to the input fibre. Each amplifier is configured such that at least one of the amplifying optical fibres is connected to the first multiplexer. The amplifying arrangement also has a second multiplexer connected to each of the first multiplexers.
    Type: Application
    Filed: November 29, 2004
    Publication date: May 19, 2005
    Inventors: Anatoly Grudinin, Dave Payne, Paul Turner, Lars Nilsson, Michael Zervas, Morten Ibsen, Michael Durkin
  • Patent number: 6826335
    Abstract: An optical fibre arrangement has at least two optical fibre sections, each optical fibre section defining an outside longitudinally extending surface. The outside longitudinally extending surfaces are in optical contact with each other. The invention further provides for an amplifying optical device have an optical fibre arrangement as just described, and a pump source. The amplifying optical device is configured such that the pump source illuminates the amplifying optical fibre. A amplifying arrangement is also disclosed. The amplifying arrangement includes a plurality of amplifying optical devices as just described, and each amplifier also has at least one input fibre and a first multiplexer connected to the input fibre. Each amplifier is configured such that at least one of the amplifying optical fibres is connected to the first multiplexer. The amplifying arrangement also has a second multiplexer connected to each of the first multiplexers.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: November 30, 2004
    Assignee: The University of Southampton
    Inventors: Anatoly Borisovich Grudinin, Dave Neil Payne, Paul William Turner, Lars Johan Albinsson Nilsson, Michael Nickolaos Zervas, Morten Ibsen, Michael Kevan Durkin
  • Publication number: 20040156572
    Abstract: Apparatus for providing timing jitter tolerant optical modulation of a first signal by a second signal, the first signal having a first wavelength, the second signal including a plurality of second signal pulses having a second pulse shape and a second wavelength. The apparatus includes a first signal input port, a second signal input port, a coupler, a grating and a non-linear optical device. The apparatus is configured to direct the second signal at the second signal input port to the non-linear optical device via the coupler and the grating, and to direct the first signal at the first signal input port to the non-linear optical device. The grating is a superstructured fibre Bragg grating that converts the second signal pulses into intermediary pulses each having an intermediary pulse shape. The intermediary pulse shape is such that it provides a switching window within the non-linear optical device.
    Type: Application
    Filed: March 15, 2004
    Publication date: August 12, 2004
    Inventors: David John Richardson, Ju Han Lee, Morten Ibsen, Periklis Petropoulos, Peh Choing Teh
  • Patent number: 6628864
    Abstract: Optical code division multiple access (OCDMA) coder:decoder gratings have been fabricated. The modulated refractive index profile that makes up the OCDMA coder:decoder grating incorporates changes in polarity between OCDMA chips by discrete phase shifts, thereby to provide bipolar coding through phase modulation. (In another embodiment quadrupolar coding is achieved). For NRZ modulation, each grating section is either in phase with, or has a predetermined phase shift relative to, the preceding grating section, depending on whether the OCDMA signature has a change in polarity between chips. RZ modulation is also possible. Results are presented from specific examples of bipolar OCDMA with NRZ modulation, which show higher data rates (10 Gbit/s), shorter chip-lengths (6.4 ps) and far longer code sequences (63 bits) than previously demonstrated. Other embodiments relate to optical packet switching, for example using the Internet Protocol (IP) or Asynchronous Transfer Mode (ATM).
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: September 30, 2003
    Assignee: University of Southampton
    Inventors: David John Richardson, Periklis Petropoulis, Morten Ibsen, Peh Chiong Teh
  • Publication number: 20030156605
    Abstract: A source of pulses of coherent radiation at a wavelength of approximately 1 &mgr;m, comprises a pump source for producing pump light; a laser cavity comprising an Yb3+-doped gain medium arranged to receive the pump light, the laser cavity being modelocked to generate laser pulses at a defined repetition rate; a pulse detector arranged to generate a pulse selection signal indicative of the repetition rate; a pulse selector arranged to reduce the repetition rate of the laser pulses responsive to the pulse selection signal from the pulse detector by passing only selected ones of the laser pulses; and at least one optical amplifier for amplifying the laser pulses of reduced repetition rate. The at least one optical amplifier can be configured for chirped or parabolic pulse amplification.
    Type: Application
    Filed: May 13, 2002
    Publication date: August 21, 2003
    Inventors: David J. Richardson, Lars Johan Albinsson Nilsson, Laurent Lefort, Jonathan Hugh Vaughan Price, Andrew Malinowski, Morten Ibsen
  • Patent number: 6549705
    Abstract: An optical grating fabrication apparatus having a phase mask for dividing an incident light beam into a plurality of diffracted beams and a focusing arrangement for receiving light from the phase mask and converging at least two non-zero-order diffracted beams together so as to generate an interference region of a characteristic period between the converged beams so that a grating structure can be impressed on an optical waveguide placed in the interference region. Further, a translation stage is arranged to move the phase mask and at least a part of the focusing arrangement with respect to one another under control of a control circuit so as to alter the angle of convergence of the converged beams and thus controllably tune the characteristic period.
    Type: Grant
    Filed: April 21, 2000
    Date of Patent: April 15, 2003
    Assignee: Pirelli Cavi e Sistemi S.P.A.
    Inventors: Richard Ian Laming, Morten Ibsen
  • Publication number: 20030035187
    Abstract: An optical transmission system comprising transmitter, link and receiver. At the receiver a decoder is connected to receive the encoded optical signal from the link and decode it according to a decoding signature carried by the decoder that is complementary to the encoding signature at the transmitter coder. The signal is thus decoded to produce a decoded optical signal having a broadened autocorrelation peak and an unwanted background pedestal component. After amplification (EDFA3) the decoded signal is supplied through a non-linear optical element in the form of a non-linear optical loop mirror (NOLM). The NOLM enhances the autocorrelation peak intensity relative to the pedestal and compresses its pulse width, to return the pulse width to the same or narrower than prior to coding at the transmitter.
    Type: Application
    Filed: March 8, 2001
    Publication date: February 20, 2003
    Inventors: David John Richardson, Periklis Petropoulos, Morten Ibsen, Peh Chiong Teh, Ju Han Lee