Patents by Inventor Morteza Safai

Morteza Safai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200300759
    Abstract: An example system for inspecting a surface includes a laser, an optical system, a gated camera, and a control system. The laser is configured to emit pulses of light, with respective wavelengths of the pulses of light varying over time. The optical system includes at least one optical element, and is configured to direct light emitted by the laser to points along a scan line one point at a time. The gated camera is configured to record a fluorescent response of the surface from light having each wavelength of a plurality of wavelengths at each point along the scan line. The control system is configured to control the gated camera such that an aperture of the gated camera is open during fluorescence of the surface but closed during exposure of the surface to light emitted by the laser.
    Type: Application
    Filed: June 2, 2020
    Publication date: September 24, 2020
    Inventors: Keith D. Humfeld, Morteza Safai
  • Patent number: 10780658
    Abstract: A method and apparatus comprising a laser unit and a controller. The laser unit is configured to generate a number of laser beams. The controller is configured to operate the laser unit to generate the number of laser beams resulting in a desired level of heating of a composite patch that cures the composite patch on a composite structure.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: September 22, 2020
    Assignee: The Boeing Company
    Inventors: Morteza Safai, Kimberly D. Meredith
  • Patent number: 10768128
    Abstract: A method of monitoring a thermal protection system coupled to a structural component is provided. The thermal protection system includes a thermally insulative body and at least one layer of thermochromatic material applied thereon such that the at least one layer is positioned between the thermally insulative body and the structural component. The method includes determining a value of a thermochromatic property of the at least one layer of thermochromatic material, wherein the value of the thermochromatic property is responsive to an amount of heat applied to the at least one layer of thermochromatic material, comparing the value to a baseline value of the thermochromatic property, and determining degradation of the thermal protection system when the value of the thermochromatic property deviates from the baseline value.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: September 8, 2020
    Assignee: THE BOEING COMPANY
    Inventors: Gary Georgeson, Morteza Safai
  • Publication number: 20200277463
    Abstract: Methods of manufacturing pre-impregnated composite fiber materials, and methods for determining the suitability of a pre-impregnated composite fiber material for incorporation into a composite structure.
    Type: Application
    Filed: March 18, 2020
    Publication date: September 3, 2020
    Applicant: The Boeing Company
    Inventor: Morteza Safai
  • Publication number: 20200271623
    Abstract: A composite material joined with a curable phenolic resin adhesive, with the phenolic resin adhesive comprising a stiffening agent precursor, and with the stiffening agent precursor selected to react with reaction by-products of the phenolic resin adhesive during curing to produce a reaction product stiffening agent in a cured bonding layer that is detectable by ultrasound, resins comprising the stiffening agent precursor, bonding layers comprising the reaction product stiffening agent, and methods for making the composite material joints and inspecting the composite material joints are disclosed.
    Type: Application
    Filed: April 30, 2020
    Publication date: August 27, 2020
    Inventors: Keith D. Humfeld, Eileen O. Kutscha, Morteza Safai
  • Patent number: 10753909
    Abstract: An example laser system includes a laser, a plurality of pulse stretchers coupled together in series, a pulse amplifier, a feedback module, and a lens assembly. The plurality of pulse stretchers is configured to stretch pulse widths of the laser pulses and output stretched laser pulses. The pulse amplifier is positioned between a first pulse stretcher and a second pulse stretch of the plurality of pulse stretchers, and is configured to amplify the laser pulses. The feedback module includes a pulse delay comparator configured to compare a first laser pulse of the laser pulses to a corresponding first stretched laser pulse of the stretched laser pulses. The feedback module also includes a computing device configured to determine an adjustment to a pulse stretcher of the plurality of pulse stretchers, and apply the adjustment to the pulse stretcher so as to modify a shape of a second stretched laser pulse.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: August 25, 2020
    Assignee: The Boeing Company
    Inventor: Morteza Safai
  • Patent number: 10755403
    Abstract: Apparatus and methods for shot peening evaluation are disclosed herein. An example apparatus for evaluating a surface that has undergone a shot peening process includes a camera to generate first image data of a first portion of the surface. The example apparatus includes a processor to determine an impact coverage value for the first portion based on the first image data and determine an effectiveness of the shot peening process for the surface based on the impact coverage value.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: August 25, 2020
    Assignee: The Boeing Company
    Inventor: Morteza Safai
  • Patent number: 10748735
    Abstract: Systems, methods, and apparatus for a multi-spectral X-ray target and source are disclosed. In one or more embodiments, a disclosed method comprises emitting, by a source of the X-ray generator, electrons towards a section of a multi-spectral X-ray target of the X-ray generator. In one or more embodiments, the multi-spectral X-ray target is rotatable and comprises a plurality of sections, which each comprise an X-ray generating material and at least two of the sections comprise a different X-ray generating material. The method further comprises generating a set of X-rays, when the electrons impinge on the section of the multi-spectral X-ray target. The method further comprises rotating the multi-spectral X-ray target such that the source is in position to project the electrons towards another section of the multi-spectral X-ray target. Further, the method comprises repeating the above method steps for all of the remaining sections of the multi-spectral X-ray target.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: August 18, 2020
    Assignee: The Boeing Company
    Inventors: Morteza Safai, Gary Georgeson, Barry R. Fox
  • Patent number: 10746670
    Abstract: An inspection system for detecting defects in a workpiece can include an illumination source for illuminating a first section of the workpiece with a patterned light, wherein the illumination source does not illuminate a second section of the workpiece. The inspection system further includes a feedback camera for imaging the first section and producing a first output, and a background camera for imaging the second section and producing a second output. A processor compares the first output with the second output, and a controller alters the patterned light that is output by the illumination source based on the comparison. This feedback control continues until the background is suitably homogeneous or camouflaged compared to the defect, such that the visibility and/or detectability of the defect is increased.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: August 18, 2020
    Assignee: The Boeing Company
    Inventor: Morteza Safai
  • Publication number: 20200234430
    Abstract: An example system includes a sensor housing defining a plurality of horizontal layers and a controller. The sensor housing includes a plurality of light-emitted diode (LED) light sources, a plurality of cameras, and a plurality of optical devices. Each camera of the plurality of cameras is positioned within a respective horizontal layer of the plurality of horizontal layers and configured to detect a respective range of wavelengths of light. The plurality of optical devices is configured to receive light reflected by the surface through a common input lens and direct the light to one of the cameras of the plurality of cameras depending on a wavelength of the light. The controller is configured to receive signals from the plurality of cameras indicative of the light reflected by the surface and determine whether there is any foreign object debris material on the surface using the signals from the plurality of cameras.
    Type: Application
    Filed: April 1, 2020
    Publication date: July 23, 2020
    Inventor: Morteza Safai
  • Patent number: 10710615
    Abstract: An example system for inspecting railcar axles includes a flash source, an infrared camera, and a trigger sensor. The flash source is configured to apply a thermal pulse toward a surface of a railcar axle of a railcar wheelset, while the railcar wheelset is on a track. The infrared camera is configured to capture infrared data indicative of a thermal response of the surface of the railcar axle to the thermal pulse. The trigger sensor is configured to trigger the flash source to apply the thermal pulse based on a position of the railcar wheelset on the track. The example system can also include a processor configured to determine whether the captured infrared data is indicative of a crack on the surface of the railcar axle, and a vision camera configured to capture an image of the surface of the railcar axle.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: July 14, 2020
    Assignee: The Boeing Company
    Inventors: Gary E. Georgeson, Morteza Safai, Tyler M. Holmes, Scott W. Lea, Jyani Vaddi
  • Patent number: 10712292
    Abstract: A method and a system for scanning an elongate structure. A scan of the elongate structure with a fluid in a cavity of the elongate structure is received. The scan is generated by a scanner using an x-ray beam. Data in the scan is filtered to remove a portion of the data in the scan attributable to the fluid to form filtered data, enabling detecting an inconsistency on a wall of the elongate structure in the filtered data.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: July 14, 2020
    Assignee: The Boeing Company
    Inventors: Morteza Safai, Gary Ernest Georgeson
  • Patent number: 10714299
    Abstract: Disclosed herein is a system for x-ray backscatter inspection. The system comprises an interior cavity. The system also comprises a non-conductive fluid contained within the interior cavity. The system additionally comprises a power source within the interior cavity and submerged in the non-conductive fluid. The system further comprises an x-ray cathode within the interior cavity, submerged in the non-conductive fluid, and coupled to the power source. The system also comprises an x-ray anode within the interior cavity, submerged in the non-conductive fluid, and positioned to receive an electron emission from the x-ray cathode to generate an x-ray emission. The system additionally comprises a thermoelectric cooler surrounding the interior cavity and operable to draw heat from the non-conductive fluid.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: July 14, 2020
    Assignee: The Boeing Company
    Inventor: Morteza Safai
  • Publication number: 20200217807
    Abstract: Systems and methods for real time, nondestructive inspection of an object being formed by additive manufacturing is provided. The disclosed systems and methods can be used with any additive manufacturing system and can detect defects introduced during fabrication. In operation, additive manufacturing of the object can be paused and the object rotated within the build chamber. An x-ray pulse can then be directed through a linear aperture towards the object being formed inside the build chamber. A linear x-ray detector array can detect the x-ray pulse and an x-ray image of the object being formed can be created. By rotating the object being formed during exposure to the x-ray pulse at least one half of one full rotation, the entire volume of the object can be inspected.
    Type: Application
    Filed: January 9, 2019
    Publication date: July 9, 2020
    Inventor: Morteza Safai
  • Publication number: 20200217808
    Abstract: Provided are backscatter detection systems and methods implementing sensor arrays comprising flexible scintillators, and associated methods of operations. Specifically, an apparatus for detecting backscatter of a radiation beam formed in response to the radiation beam encountering an object comprises a structure configured to change from a first shape to a second shape. The apparatus further comprises a sensor array which comprises a flexible scintillating panel covering an area of the structure, and configured to conform to the shape of the structure form the first shape to the second shape. The flexible scintillating panel may comprise a plurality of optical fibers enclosed in a semi-rigid casing and coupled to a light detector. The plurality of optical fibers may be arranged in one or more layers. A layer of optical fibers may be arranged in a plurality of clusters or in an interwoven configuration.
    Type: Application
    Filed: January 4, 2019
    Publication date: July 9, 2020
    Applicant: The Boeing Company
    Inventor: Morteza Safai
  • Patent number: 10705019
    Abstract: An example system for inspecting a surface includes a laser, an optical system, a gated camera, and a control system. The laser is configured to emit pulses of light, with respective wavelengths of the pulses of light varying over time. The optical system includes at least one optical element, and is configured to direct light emitted by the laser to points along a scan line one point at a time. The gated camera is configured to record a fluorescent response of the surface from light having each wavelength of a plurality of wavelengths at each point along the scan line. The control system is configured to control the gated camera such that an aperture of the gated camera is open during fluorescence of the surface but closed during exposure of the surface to light emitted by the laser.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: July 7, 2020
    Assignee: The Boeing Company
    Inventors: Keith D. Humfeld, Morteza Safai
  • Patent number: 10692204
    Abstract: A system and method for the detection of foreign object debris materials or defects on and/or under a surface of a composite part under manufacture. A member, for example an inspection gantry, is configured to move over the surface. A thermal excitation source is fixed to the member and is configured to direct infrared radiation across the surface. An infrared camera is also fixed to the member a predetermined distance away from the thermal excitation source and is configured to scan the surface as the member moves over the surface to detect and output scan information of the surface. A controller is coupled to the excitation source and to the infrared camera. The controller is configured to process the scan information from the infrared camera to identify a foreign object debris material or defect located on and/or under the surface.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: June 23, 2020
    Assignee: THE BOEING COMPANY
    Inventors: Jeffrey G. Thompson, Morteza Safai
  • Publication number: 20200191983
    Abstract: Disclosed herein is a system for x-ray inspection. The system comprises an x-ray emitter. The system also comprises an x-ray sensor array comprising a first x-ray sensor, a second x-ray sensor adjacent the first x-ray sensor, and a coupler movably coupling the first x-ray sensor to the second x-ray sensor. The first x-ray sensor is movable into a plurality of orientations relative to the second x-ray sensor via the coupler. The system further comprises an imaging device to generate an inspection image based on information from the x-ray sensor array.
    Type: Application
    Filed: December 13, 2018
    Publication date: June 18, 2020
    Inventor: Morteza Safai
  • Patent number: 10677762
    Abstract: Disclosed herein is an apparatus for inspecting structural integrity of a part. The apparatus includes a body and at least one sensor. The body is movable relative to the part. The at least one sensor is coupled to the body and includes a plurality of nanotubes configured to generate electrical signals when acted upon by an acoustic shockwave propagating through the part. The electrical signals are proportional to an intensity of the acoustic shockwave.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: June 9, 2020
    Assignee: The Boeing Company
    Inventor: Morteza Safai
  • Patent number: 10677759
    Abstract: A composite material joined with a curable phenolic resin adhesive, with the phenolic resin adhesive comprising a stiffening agent precursor, and with the stiffening agent precursor selected to react with reaction by-products of the phenolic resin adhesive during curing to produce a reaction product stiffening agent in a cured bonding layer that is detectable by ultrasound, resins comprising the stiffening agent precursor, bonding layers comprising the reaction product stiffening agent, and methods for making the composite material joints and inspecting the composite material joints are disclosed.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: June 9, 2020
    Assignee: The Boeing Company
    Inventors: Keith D Humfeld, Eileen O Kutscha, Morteza Safai