Patents by Inventor Motoki Nakashima

Motoki Nakashima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120312681
    Abstract: There have been cases where transistors formed using oxide semiconductors are inferior in reliability to transistors formed using amorphous silicon. Thus, in the present invention, a semiconductor device including a highly reliable transistor formed using an oxide semiconductor is manufactured. An oxide semiconductor film is deposited by a sputtering method, using a sputtering target including an oxide semiconductor having crystallinity, and in which the direction of the c-axis of a crystal is parallel to a normal vector of the top surface of the oxide semiconductor. The target is formed by mixing raw materials so that its composition ratio can obtain a crystal structure.
    Type: Application
    Filed: June 5, 2012
    Publication date: December 13, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei Yamazaki, Tetsunori Maruyama, Yuki Imoto, Hitomi Sato, Masahiro Watanabe, Mitsuo Mashiyama, Kenichi Okazaki, Motoki Nakashima, Takashi Shimazu
  • Publication number: 20120298998
    Abstract: The impurity concentration in the oxide semiconductor film is reduced, and a highly reliability can be obtained.
    Type: Application
    Filed: May 17, 2012
    Publication date: November 29, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Masahiro WATANABE, Mitsuo MASHIYAMA, Kenichi OKAZAKI, Motoki NAKASHIMA, Hideyuki KISHIDA
  • Publication number: 20120267622
    Abstract: Stable electrical characteristics are given to a transistor and a highly reliable semiconductor device is provided. In addition, an oxide material which enables manufacture of such a semiconductor device is provided. An oxide film is used in which two or more kinds of crystalline portions which are different from each other in a direction of an a-axis or a direction of a b-axis in an a-b plane (or the top surface, or the formation surface) are included, and each of the crystalline portions is c-axis aligned, has at least one of triangular atomic arrangement and hexagonal atomic arrangement when seen from a direction perpendicular to the a-b plane, a top surface, or a formation surface, includes metal atoms arranged in a layered manner, or metal atoms and oxygen atoms arranged in a layered manner along the c-axis, and is expressed as In2SnZn2O7(ZnO)m (m is 0 or a natural number).
    Type: Application
    Filed: April 11, 2012
    Publication date: October 25, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Motoki NAKASHIMA
  • Publication number: 20120153364
    Abstract: An object is to provide a material suitably used for a semiconductor included in a transistor, a diode, or the like. Another object is to provide a semiconductor device including a transistor in which the condition of an electron state at an interface between an oxide semiconductor film and a gate insulating film in contact with the oxide semiconductor film is favorable. Further, another object is to manufacture a highly reliable semiconductor device by giving stable electric characteristics to a transistor in which an oxide semiconductor film is used for a channel. A semiconductor device is formed using an oxide material which includes crystal with c-axis alignment, which has a triangular or hexagonal atomic arrangement when seen from the direction of a surface or an interface and rotates around the c-axis.
    Type: Application
    Filed: December 14, 2011
    Publication date: June 21, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Motoki NAKASHIMA, Tatsuya HONDA
  • Publication number: 20110115046
    Abstract: Methods for manufacturing a semiconductor substrate and a semiconductor device by which a high-performance semiconductor element can be formed are provided. A single crystal semiconductor substrate including an embrittlement layer and a base substrate are bonded to each other with an insulating layer interposed therebetween, and the single crystal semiconductor substrate is separated along the embrittlement layer by heat treatment to fix a single crystal semiconductor layer over the base substrate. Next, a plurality of regions of a monitor substrate are irradiated with laser light under conditions of different energy densities, and carbon concentration distribution and hydrogen concentration distribution in a depth direction of each region of the single crystal semiconductor layer which has been irradiated with the laser light is measured.
    Type: Application
    Filed: January 21, 2011
    Publication date: May 19, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Akihisa SHIMOMURA, Masaki KOYAMA, Motoki NAKASHIMA
  • Patent number: 7932164
    Abstract: Methods for manufacturing a semiconductor substrate and a semiconductor device by which a high-performance semiconductor element can be formed are provided. A single crystal semiconductor substrate including an embrittlement layer and a base substrate are bonded to each other with an insulating layer interposed therebetween, and the single crystal semiconductor substrate is separated along the embrittlement layer by heat treatment to fix a single crystal semiconductor layer over the base substrate. Next, a plurality of regions of a monitor substrate are irradiated with laser light under conditions of different energy densities, and carbon concentration distribution and hydrogen concentration distribution in a depth direction of each region of the single crystal semiconductor layer which has been irradiated with the laser light is measured.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: April 26, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Masaki Koyama, Motoki Nakashima
  • Publication number: 20090230503
    Abstract: Methods for manufacturing a semiconductor substrate and a semiconductor device by which a high-performance semiconductor element can be formed are provided. A single crystal semiconductor substrate including an embrittlement layer and a base substrate are bonded to each other with an insulating layer interposed therebetween, and the single crystal semiconductor substrate is separated along the embrittlement layer by heat treatment to fix a single crystal semiconductor layer over the base substrate. Next, a plurality of regions of a monitor substrate are irradiated with laser light under conditions of different energy densities, and carbon concentration distribution and hydrogen concentration distribution in a depth direction of each region of the single crystal semiconductor layer which has been irradiated with the laser light is measured.
    Type: Application
    Filed: March 12, 2009
    Publication date: September 17, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Akihisa SHIMOMURA, Masaki KOYAMA, Motoki NAKASHIMA
  • Publication number: 20070150206
    Abstract: A calculation method for finding the hole mobility or the electron mobility of an organic film. The method includes the steps of: calculating the electron density of a film using semi-empirical quantum molecular dynamics calculations; using the fact that holes and electrons move easily through regions of high electron density to calculate the probability that a hole or an electron will move in an excited state in which an electron is excited from the HOMO (highest occupied molecular orbital) to the LUMO (lowest unoccupied molecular orbital) using a Monte Carlo method; and, using the probability as a performance index, calculating the hole mobility from the number of carriers which exist in the HOMO and the orbitals below the HOMO, or calculating the electron mobility from the number of carriers which exist in the LUMO and the orbitals above the LUMO.
    Type: Application
    Filed: December 22, 2006
    Publication date: June 28, 2007
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yuji Iwaki, Motoki Nakashima