Patents by Inventor Motonori Nishida

Motonori Nishida has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11644397
    Abstract: This invention relates to a method of evaluating a squeegeeing property of powder for lamination shaping by stable criteria. In this method, the squeegeeing property is evaluated using at least a satellite adhesion ratio of the powder and an apparent density of the powder. The satellite adhesion ratio is the ratio of the number of particles on which satellites are adhered to the number of all particles. If the satellite adhesion ratio is equal to or less than 50%, and the apparent density is equal to or more than 3.5 g/cm3, the squeegeeing property is evaluated as that the powder can be spread into a uniform powder layer in the lamination shaping. Furthermore, if the 50% particle size of a powder obtained by a laser diffraction method is 3 to 250 ?m, the squeegeeing property is evaluated as that the powder can be spread into a uniform powder layer in the lamination shaping.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: May 9, 2023
    Assignees: FUKUDA METAL FOIL & POWDER CO., LTD., TECHNOLOGY RESEARCH ASSOCIATION FOR FUTURE ADDITIVE MANUFACTURING
    Inventors: Seiichi Matsumoto, Yuji Sugitani, Motonori Nishida
  • Patent number: 11185924
    Abstract: A metal powder for additive manufacturing includes: not less than 0.2 mass % and not more than 1.3 mass % of aluminum; and a balance including copper and an incidental impurity.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: November 30, 2021
    Assignees: DAIHEN CORPORATION, FUKUDA METAL FOIL & POWDER CO., LTD.
    Inventors: Ryusuke Tsubota, Junichi Tanaka, Yohei Oka, Akira Okamoto, Masato Kikukawa, Hiroaki Okubo, Yoshito Nishizawa, Takeshi Maruyama, Motonori Nishida
  • Patent number: 10967431
    Abstract: A metal powder for additive manufacturing includes: not less than 0.2 mass % and not more than 1.3 mass % of aluminum; and a balance including copper and an incidental impurity.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: April 6, 2021
    Assignees: DAIHEN CORPORATION, FUKUDA METAL FOIL & POWDER CO., LTD.
    Inventors: Ryusuke Tsubota, Junichi Tanaka, Yohei Oka, Akira Okamoto, Masato Kikukawa, Hiroaki Okubo, Yoshito Nishizawa, Takeshi Maruyama, Motonori Nishida
  • Publication number: 20200254517
    Abstract: This invention relates to a method of evaluating a squeegeeing property of powder for lamination shaping by stable criteria. In this method, the squeegeeing property is evaluated using at least a satellite adhesion ratio of the powder and an apparent density of the powder. The satellite adhesion ratio is the ratio of the number of particles on which satellites are adhered to the number of all particles. If the satellite adhesion ratio is equal to or less than 50%, and the apparent density is equal to or more than 3.5 g/cm3, the squeegeeing property is evaluated as that the powder can be spread into a uniform powder layer in the lamination shaping. Furthermore, if the 50% particle size of a powder obtained by a laser diffraction method is 3 to 250 ?m, the squeegeeing property is evaluated as that the powder can be spread into a uniform powder layer in the lamination shaping.
    Type: Application
    Filed: August 25, 2017
    Publication date: August 13, 2020
    Applicants: FUKUDA METAL FOIL & POWDER CO., LTD., TECHNOLOGY RESEARCH ASSOCIATION FOR FUTURE ADDITIVE MANUFACTURING
    Inventors: Seiichi MATSUMOTO, Yuji SUGITANI, Motonori NISHIDA
  • Publication number: 20190168303
    Abstract: A metal powder for additive manufacturing includes: not less than 0.2 mass % and not more than 1.3 mass % of aluminum; and a balance including copper and an incidental impurity.
    Type: Application
    Filed: February 6, 2019
    Publication date: June 6, 2019
    Applicants: DAIHEN CORPORATION, FUKUDA METAL FOIL & POWDER CO., LTD.
    Inventors: Ryusuke TSUBOTA, Junichi TANAKA, Yohei OKA, Akira OKAMOTO, Masato KIKUKAWA, Hiroaki OKUBO, Yoshito NISHIZAWA, Takeshi MARUYAMA, Motonori NISHIDA
  • Publication number: 20190168302
    Abstract: A metal powder for additive manufacturing includes: not less than 0.2 mass % and not more than 1.3 mass % of aluminum; and a balance including copper and an incidental impurity.
    Type: Application
    Filed: February 6, 2019
    Publication date: June 6, 2019
    Applicants: Daihen Corporation, Fukuda Metal Foil & Powder Co., Ltd.
    Inventors: Ryusuke Tsubota, Junichi Tanaka, Yohei Oka, Akira Okamoto, Masato Kikukawa, Hiroaki Okubo, Yoshito Nishizawa, Takeshi Maruyama, Motonori Nishida
  • Publication number: 20180333775
    Abstract: The present invention relates to a metal powder which shortens a lamination-shaping time and facilitates the removal of an unnecessary powder after lamination-shaping by decreasing a pre-sintering temperature by using a processed metal powder. This metal powder for lamination-shaping is obtained by coating the surface of a powder of a nickel-based alloy with a conductive material. When the powder is the powder of the nickel-based alloy containing nickel as a main component and chromium and iron as primary subcomponents, the powder is coated, e.g., plated with nickel as the conductive material. The particle diameter range of the powder of the nickel-based alloy is 10 to 200 ?m, preferably 25 to 150 ?m, and more preferably 45 to 105 ?m. The thickness range of the conductive material is 0.1 to 1 ?m, and preferably 0.3 ?m or more.
    Type: Application
    Filed: December 26, 2016
    Publication date: November 22, 2018
    Applicant: Technology Research Association For Future Additive Manufacturing
    Inventors: Motonori NISHIDA, Yuji SUGITANI, Akihiko CHIBA, Youhei DAINO
  • Publication number: 20170182557
    Abstract: A metal powder for additive manufacturing includes: not less than 0.2 mass % and not more than 1.3 mass % of aluminum; and a balance including copper and an incidental impurity.
    Type: Application
    Filed: December 15, 2016
    Publication date: June 29, 2017
    Applicants: DAIHEN CORPORATION, FUKUDA METAL FOIL & POWDER CO., LTD.
    Inventors: Ryusuke TSUBOTA, Junichi TANAKA, Yohei OKA, Akira OKAMOTO, Masato KIKUKAWA, Hiroaki OKUBO, Yoshito NISHIZAWA, Takeshi MARUYAMA, Motonori NISHIDA
  • Publication number: 20060070524
    Abstract: A hydrogen permeation membrane having excellent hydrogen permeability and hydrogen embrittlement resistance, and a production method thereof. This membrane is made of a niobium alloy foil having an amorphous crystal structure, the niobium alloy foil comprising 5 to 65 atomic % of at least one member selected from the group consisting of Ni, Co and Mo as a first additive element and 0.1 to 60 atomic % of at least one member selected from the group consisting of V, Ti, Zr, Ta and Hf as a second additive element together with the balance of Nb as an indispensable constituent element wherein 0.01 to 20 atomic % of Al and/or Cu may be contained as a third additive element. This alloy foil can be produced through a method comprising preparing a metal mixture of the above formulation, heating the metal mixture to the melting point or higher in an inert gas so as to melt the same and forming the melt into a film (foil) according to a liquid quenching technique.
    Type: Application
    Filed: December 22, 2003
    Publication date: April 6, 2006
    Inventors: Akihisa Inoue, Hisamichi Kimura, Shinichi Yamaura, Motonori Nishida, Hitoshi Okochi, Yoichiro Shinpo
  • Patent number: 6585033
    Abstract: The invention provides a process for producing vanadium alloy foil suitable as a membrane in a hydrogen-refining unit. A vanadium alloy comprising 5 to 25% by weight of at least one selected from the group consisting of Ni, Co, Mo, Fe and Ag, 0.01 to 5% by weight of at least one selected from the group consisting of Ti, Zr and Y, and the balance being V is used. A melt of the vanadium alloy is prepared by use of a crucible 1 having slit 3 in the bottom, a roll 2 comprising a cylinder whose central axis is arranged to be parallel to the slit is rotated, the melt is jetted from the slit 3 to the roll surface 5, the melt is jetted from the slit 3 is rapidly cooled, and the vanadium alloy solidified on the roll surface 5 is continuously exfolitated from the roll surface 5 to obtain the foil.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: July 1, 2003
    Assignee: Fukuda Metal Foil & Powder Co., Ltd.
    Inventors: Motonori Nishida, Akira Takagi, Toshiki Ohnishi, Osamu Kajita
  • Publication number: 20020157806
    Abstract: The invention provides a process for producing vanadium alloy foil suitable as a membrane in a hydrogen-refining unit.
    Type: Application
    Filed: February 19, 2002
    Publication date: October 31, 2002
    Applicant: Fukuda Metal Foil & Powder Co., Ltd.
    Inventors: Motonori Nishida, Akira Takagi, Toshiki Ohnishi, Osamu Kajita
  • Publication number: 20010004855
    Abstract: There is provided a ball mill having a milling chamber into which metal powder is fed. The ball mill is also provided with milling means for milling metal powder into fine metal powder having a particle size less than a predetermined size. When the ball mill operates, a quantity of heat (Qo) is generated in the milling chamber. The milling chamber is cooled by liquid cooling means and gas cooling means according to the present invention. The liquid cooling means causes cooling liquid to flow along the outside wall of the milling chamber to remove a quantity of heat (Q1) during the ball mill operation. The gas cooling means causes cooling gas to flow through the milling chamber to remove a quantity of heat (Q2) during the ball mill operation. The generated quantity of heat (Qo) can be counterbalanced with the sum of the removed quantities of heat (Q1) and (Q2) so as to prevent the inside of the milling chamber from overheating, so that the ball mill can operate in the condition of Qo/V≧0.
    Type: Application
    Filed: December 22, 2000
    Publication date: June 28, 2001
    Applicant: FUKUDA METAL FOIL & POWDER CO., LTD
    Inventors: Takeshi Fukuda, Kensuke Hidaka, Tamiho Mizutani, Motonori Nishida, Yoshio Kohira
  • Patent number: 6196480
    Abstract: There is provided a ball mill having a milling chamber into which metal powder is fed. The ball mill is also provided with milling means for milling metal powder into fine metal powder having a particle size less than a predetermined size. When the ball mill operates, a quantity of heat (Q0) is generated in the milling chamber. The milling chamber is cooled by liquid cooling means and gas cooling means according to the present invention. The liquid cooling means causes cooling liquid to flow along the outside wall of the milling chamber to remove a quantity of heat (Q1) during the ball mill operation. The gas cooling means causes cooling gas to flow through the milling chamber to remove a quantity of heat (Q2) during the ball mill operation. The generated quantity of heat (Q0) can be counterbalanced with the sum of the removed quantities of heat (Q1) and (Q2) so as to prevent the inside of the milling chamber from overheating, so that the ball mill can operate in the condition of Q0/V≧0.
    Type: Grant
    Filed: March 22, 1999
    Date of Patent: March 6, 2001
    Assignee: Fukuda Metal Foil & Powder Co., Ltd.
    Inventors: Takeshi Fukuda, Kensuke Hidaka, Tamiho Mizutani, Motonori Nishida, Yoshio Kohira