Patents by Inventor Mu San Zhang

Mu San Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11390705
    Abstract: Provided herein are methods of making a reactive particulate material by free radically polymerizing a single-cure resin to produce a polymer, the resin comprising: a reactive blocked polyurethane prepolymer, a reactive blocked polyurea prepolymer, a reactive blocked polyurethane-polyurea copolymer, or a combination thereof, wherein said polymerizing is carried out by dispersive polymerization (e.g., an emulsion, suspension or dispersion polymerization process), to form said reactive particulate material. Methods of use of the reactive particulate material and material sets including the same are also provided.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: July 19, 2022
    Assignee: Carbon, Inc.
    Inventors: Justin Poelma, Mu San Zhang, Xinyu Gu, Jason P. Rolland, Joseph M. DeSimone
  • Patent number: 11299576
    Abstract: Provided herein are methods of recycling additively manufactured objects, which may include making a reactive particulate material by recycling preformed articles or recovered coating material. Methods of use of the reactive particulate material and material sets including the same are also provided.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: April 12, 2022
    Assignee: Carbon, Inc.
    Inventors: Justin Poelma, Mu San Zhang, Xinyu Gu, Jason P. Rolland, Joseph M. DeSimone
  • Publication number: 20220091504
    Abstract: Provided herein is a method of forming a three-dimensional object in which the polymerizable liquid includes a mixture of (i) a light polymerizable first component, and (ii) a heat polymerizable second component; the heat polymerizable second component comprising (i) a first blocked reactive constituent that is blocked with a volatile blocking group, and optionally (ii) a curative. Upon heating a formed three-dimensional intermediate sufficiently, the volatile blocking group is cleaved and vaporizes out of the three-dimensional intermediate, to form the three-dimensional object. Also provided is a three-dimensional object produced by the method. Further provided is a polymerizable liquid composition useful for carrying out the method, and prepolymers and monomers useful for the polymerizable liquid composition.
    Type: Application
    Filed: December 3, 2021
    Publication date: March 24, 2022
    Inventors: Kai Chen, Andrew Gordon Wright, Mu San Zhang
  • Patent number: 11226559
    Abstract: Provided herein is a method of forming a three-dimensional object in which the polymerizable liquid includes a mixture of (i) a light polymerizable first component, and (ii) a heat polymerizable second component; the heat polymerizable second component comprising (i) a first blocked reactive constituent that is blocked with a volatile blocking group, and optionally (ii) a curative. Upon heating a formed three-dimensional intermediate sufficiently, the volatile blocking group is cleaved and vaporizes out of the three-dimensional intermediate, to form the three-dimensional object. Also provided is a three-dimensional object produced by the method. Further provided is a polymerizable liquid composition useful for carrying out the method, and prepolymers and monomers useful for the polymerizable liquid composition.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: January 18, 2022
    Assignee: Carbon, Inc.
    Inventors: Kai Chen, Andrew Gordon Wright, Mu San Zhang
  • Publication number: 20210246252
    Abstract: Provided herein are methods of recycling additively manufactured objects, which may include making a reactive particulate material by recycling preformed articles or recovered coating material. Methods of use of the reactive particulate material and material sets including the same are also provided.
    Type: Application
    Filed: May 9, 2019
    Publication date: August 12, 2021
    Inventors: Justin POELMA, Mu San ZHANG, Xinyu GU, Jason P. ROLLAND, Joseph M. DeSIMONE
  • Publication number: 20210246300
    Abstract: Provided herein are methods of making a reactive particulate material by free radically polymerizing a single-cure resin to produce a polymer, the resin comprising: a reactive blocked polyurethane prepolymer, a reactive blocked polyurea prepolymer, a reactive blocked polyurethane-polyurea copolymer, or a combination thereof, wherein said polymerizing is carried out by dispersive polymerization (e.g., an emulsion, suspension or dispersion polymerization process), to form said reactive particulate material. Methods of use of the reactive particulate material and material sets including the same are also provided.
    Type: Application
    Filed: May 9, 2019
    Publication date: August 12, 2021
    Inventors: Justin Poelma, Mu San Zhang, Xinyu Gu, Jason P. Rolland, Joseph M. DeSimone
  • Publication number: 20200406550
    Abstract: Provided herein are methods of recycling additively manufactured objects (e.g., stereolithographically produced objects), the additively manufactured objects comprising linear polyurethane, branched polyurethane, linear polyurea, branched polyurea, a copolymer thereof, or a combination thereof. Compositions comprising the same and methods of use thereof are also provided.
    Type: Application
    Filed: February 26, 2019
    Publication date: December 31, 2020
    Inventors: Mu San Zhang, Kai Chen, Jason P. Rolland, Justin Poelma
  • Patent number: 10743537
    Abstract: Techniques regarding ionene compositions with antimicrobial functionality are provided. For example, one or more embodiments can comprise a monomer, which can comprise a single ionene unit. The single ionene unit can comprise a cation distributed along a molecular backbone. Also, a hydrophobic functional group can be covalently bonded to the molecular backbone, and the single ionene unit can have antimicrobial functionality.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: August 18, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Victoria A. Piunova, Pang Kern Jeremy Tan, Yi Yan Yang, Mu San Zhang
  • Patent number: 10687530
    Abstract: Techniques regarding ionene and/or polyionene compositions with antimicrobial functionality and enhanced hydrophilicity are provided. For example, one or more embodiments can regard a chemical compound that can comprise an ionene unit, which can comprise a cation distributed along a degradable backbone. The degradable backbone can comprise a terephthalamide structure. The ionene unit can have antimicrobial functionality. Further, the chemical compound can comprise a hydrophilic functional group covalently bonded to the ionene unit. Also, the chemical compound can have carbohydrate mimetic functionality.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: June 23, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Victoria A. Piunova, Pang Kern Jeremy Tan, Yi Yan Yang, Mu San Zhang
  • Publication number: 20200174367
    Abstract: Provided herein is a method of forming a three-dimensional object in which the polymerizable liquid includes a mixture of (i) a light polymerizable first component, and (ii) a heat polymerizable second component; the heat polymerizable second component comprising (i) a first blocked reactive constituent that is blocked with a volatile blocking group, and optionally (ii) a curative. Upon heating a formed three-dimensional intermediate sufficiently, the volatile blocking group is cleaved and vaporizes out of the three-dimensional intermediate, to form the three-dimensional object. Also provided is a three-dimensional object produced by the method. Further provided is a polymerizable liquid composition useful for carrying out the method, and prepolymers and monomers useful for the polymerizable liquid composition.
    Type: Application
    Filed: June 7, 2018
    Publication date: June 4, 2020
    Inventors: Kai Chen, Andrew Gordon Wright, Mu San Zhang
  • Patent number: 10336897
    Abstract: Methods, compounds, and compositions described herein generally relate to hemiaminal organogel networks (HDCNs) and methods of forming HDCNs. In some embodiments, a hemiaminal organogel has a plurality of first polymers, each having a first end and a second end, a plurality of second polymers, each having a first end and a second end, and a plurality of trivalent aminal-hemiaminal linkages. The first end of each polymer of the plurality of first polymers may be covalently bonded to a first trivalent aminal-hemiaminal linkage. The second end of each polymer of the plurality of first polymers may be covalently bonded to a second trivalent aminal-hemiaminal linkage. The first end of each polymer of the plurality of second polymers may be covalently bonded to one of the plurality of trivalent aminal-hemiaminal linkages. The second end of each polymer of the plurality of second polymers may be non-covalently bonded.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: July 2, 2019
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Mareva B. Fevre, Jeannette M. Garcia, James L. Hedrick, Rudy J. Wojtecki, Mu San Zhang
  • Publication number: 20190174755
    Abstract: Techniques regarding ionene and/or polyionene compositions with antimicrobial functionality and enhanced hydrophilicity are provided. For example, one or more embodiments can regard a chemical compound that can comprise an ionene unit, which can comprise a cation distributed along a degradable backbone. The degradable backbone can comprise a terephthalamide structure. The ionene unit can have antimicrobial functionality. Further, the chemical compound can comprise a hydrophilic functional group covalently bonded to the ionene unit. Also, the chemical compound can have carbohydrate mimetic functionality.
    Type: Application
    Filed: December 12, 2017
    Publication date: June 13, 2019
    Inventors: Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Victoria A. Piunova, Pang Kern Jeremy Tan, Yi Yan Yang, Mu San Zhang
  • Publication number: 20190174757
    Abstract: Techniques regarding ionene compositions with antimicrobial functionality are provided. For example, one or more embodiments can comprise a monomer, which can comprise a single ionene unit. The single ionene unit can comprise a cation distributed along a molecular backbone. Also, a hydrophobic functional group can be covalently bonded to the molecular backbone, and the single ionene unit can have antimicrobial functionality.
    Type: Application
    Filed: December 12, 2017
    Publication date: June 13, 2019
    Inventors: Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Victoria A. Piunova, Pang Kern Jeremy Tan, Yi Yan Yang, Mu San Zhang
  • Patent number: 10167367
    Abstract: A block copolymer includes a water-soluble block that is bonded to one or more hydrophobic polycarbonate blocks that include pendant fluoroaryl substituents.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: January 1, 2019
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Mareva B. Fevre, Jeannette M. Garcia, James L. Hedrick, Nathaniel H. Park, Rudy J. Wojtecki, Mu San Zhang
  • Patent number: 10023697
    Abstract: A number of cationic antimicrobial polymers have been synthesized by a condensation polymerization in bulk. The initial polymer formed has backbone tertiary nitrogens, which are subsequently quaternized using a suitable quaternizing agent (e.g., alkyl halide). The cationic polymers include polyamides, polycarbonates, polypolyureas and polyguanidiniums having a cationic repeat unit comprising the quaternary ammonium nitrogen as a backbone nitrogen. The cationic polymers can be active against Gram-negative, Gram-positive microbes, and/or fungi.
    Type: Grant
    Filed: November 25, 2016
    Date of Patent: July 17, 2018
    Assignees: International Business Machines Corporation, Agency For Science, Technology And Research
    Inventors: Gregory Breyta, Julian M. W. Chan, Daniel J. Coady, Amanda C. Engler, Jeannette M. Garcia, Wei Han, James L. Hedrick, Alshakim Nelson, Robert J. Ono, Yi Yan Yang, Mu San Zhang
  • Publication number: 20180112041
    Abstract: A block copolymer includes a water-soluble block that is bonded to one or more hydrophobic polycarbonate blocks that include pendant fluoroaryl substituents.
    Type: Application
    Filed: October 24, 2016
    Publication date: April 26, 2018
    Inventors: DYLAN J. BODAY, MAREVA B. FEVRE, JEANNETTE M. GARCIA, JAMES L. HEDRICK, NATHANIEL H. PARK, RUDY J. WOJTECKI, MU SAN ZHANG
  • Patent number: 9868870
    Abstract: A thermo-responsive shear-thinning photo-curable composition comprises water, a linear amphiphilic polyether ABA triblock copolymer comprising at least one pendent ene group (*—CH?CH2) capable of undergoing a thiol-ene reaction, a water-soluble crosslinking agent comprising two or more methylenethiol groups (*—CH2SH), and a photoinitiator. Under non-shear conditions and a triblock copolymer concentration suitable for direct-write printing, the composition is a viscoelastic solid (hydrogel) at a temperature of about 15° C. to about 45° C., and is a free-flowing liquid (sol) between 0° C. and about 10° C. The hydrogel form can be shear-thinned at about 15° C. to about 45° C. to form a sol suitable for a direct-write printer using an extruding print-head. The compositions covalently crosslink when flood-exposed to ultraviolet radiation. The compositions have utility in forming three-dimensional scaffolds for growing living cells.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: January 16, 2018
    Assignee: International Business Machines Corporation
    Inventors: Amanda C. Engler, Wei Han, Hareem T. Maune, Alshakim Nelson, Ankit Vora, Rudy J. Wojtecki, Mu San Zhang
  • Publication number: 20170342212
    Abstract: Methods, compounds, and compositions described herein generally relate to hemiaminal organogel networks (HDCNs) and methods of forming HDCNs. In some embodiments, a hemiaminal organogel has a plurality of first polymers, each having a first end and a second end, a plurality of second polymers, each having a first end and a second end, and a plurality of trivalent aminal-hemiaminal linkages. The first end of each polymer of the plurality of first polymers may be covalently bonded to a first trivalent aminal-hemiaminal linkage. The second end of each polymer of the plurality of first polymers may be covalently bonded to a second trivalent aminal-hemiaminal linkage. The first end of each polymer of the plurality of second polymers may be covalently bonded to one of the plurality of trivalent aminal-hemiaminal linkages. The second end of each polymer of the plurality of second polymers may be non-covalently bonded.
    Type: Application
    Filed: August 18, 2017
    Publication date: November 30, 2017
    Inventors: Dylan J. BODAY, Mareva B. FEVRE, Jeannette M. GARCIA, James L. HEDRICK, Rudy J. WOJTECKI, Mu San ZHANG
  • Publication number: 20170267883
    Abstract: A thermo-responsive shear-thinning photo-curable composition comprises water, a linear amphiphilic polyether ABA triblock copolymer comprising at least one pendent ene group (*—CH?CH2) capable of undergoing a thiol-ene reaction, a water-soluble crosslinking agent comprising two or more methylenethiol groups (*—CH2SH), and a photoinitiator. Under non-shear conditions and a triblock copolymer concentration suitable for direct-write printing, the composition is a viscoelastic solid (hydrogel) at a temperature of about 15° C. to about 45° C., and is a free-flowing liquid (sol) between 0° C. and about 10° C. The hydrogel form can be shear-thinned at about 15° C. to about 45° C. to form a sol suitable for a direct-write printer using an extruding print-head. The compositions covalently crosslink when flood-exposed to ultraviolet radiation. The compositions have utility in forming three-dimensional scaffolds for growing living cells.
    Type: Application
    Filed: March 16, 2016
    Publication date: September 21, 2017
    Inventors: Amanda C. Engler, Wei Han, Hareem T. Maune, Alshakim Nelson, Ankit Vora, Rudy J. Wojtecki, Mu San Zhang
  • Patent number: 9758620
    Abstract: Methods, compounds, and compositions described herein generally relate to hemiaminal organogel networks (HDCNs) and methods of forming HDCNs. In some embodiments, a hemiaminal organogel has a plurality of first polymers, each having a first end and a second end, a plurality of second polymers, each having a first end and a second end, and a plurality of trivalent aminal-hemiaminal linkages. The first end of each polymer of the plurality of first polymers may be covalently bonded to a first trivalent aminal-hemiaminal linkage. The second end of each polymer of the plurality of first polymers may be covalently bonded to a second trivalent aminal-hemiaminal linkage. The first end of each polymer of the plurality of second polymers may be covalently bonded to one of the plurality of trivalent aminal-hemiaminal linkages. The second end of each polymer of the plurality of second polymers may be non-covalently bonded.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: September 12, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Dylan J. Boday, Mareva B. Fevre, Jeannette M. Garcia, James L. Hedrick, Rudy J. Wojtecki, Mu San Zhang