Patents by Inventor Muhannad Bakir

Muhannad Bakir has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220077104
    Abstract: Methods of bonding and structures with such bonding are disclosed. One such method includes providing a first substrate with a first electrical contact; providing a second substrate with a second electrical contact above the first electrical contact, wherein an upper surface of the first electrical contact is spaced apart from a lower surface of the second electrical contact by a gap; and depositing a layer of selective metal on the lower surface of the second electrical contact and on the upper surface of the first electrical contact by a thermal Atomic Layer Deposition (ALD) process until the gap is filled to create a bond between the first electrical contact and the second electrical contact.
    Type: Application
    Filed: September 9, 2021
    Publication date: March 10, 2022
    Inventors: Mike Breeden, Victor Wang, Andrew Kummel, Ming-Jui Li, Muhannad Bakir, Jonathan Hollin, Nyi Myat Khine Linn, Charles H. Winter
  • Patent number: 8803509
    Abstract: Exemplary embodiments of the present invention disclose a modular testing assay. According to various embodiments of the present invention, the sensor arrays, or microplates, are removably attached to a substrate. In some embodiments, the electrical connection between the sensors of the sensor array and the substrate provide for the removal of one sensor array or microplate with another or similar sensor array. The sensor arrays can be aligned using various types of alignment devices or the substrate can be configured to allow various alignments and spatial orientations of one or more sensor arrays.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: August 12, 2014
    Assignee: Georgia Tech Research Corporation
    Inventors: Ramasamy Ravindran, Muhannad Bakir
  • Publication number: 20110291643
    Abstract: Exemplary embodiments of the present invention disclose a modular testing assay. According to various embodiments of the present invention, the sensor arrays, or microplates, are removably attached to a substrate. In some embodiments, the electrical connection between the sensors of the sensor array and the substrate provide for the removal of one sensor array or microplate with another or similar sensor array. The sensor arrays can be aligned using various types of alignment devices or the substrate can be configured to allow various alignments and spatial orientations of one or more sensor arrays.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 1, 2011
    Applicant: Georgia Tech Researh Corporation
    Inventors: RAMASAMY RAVINDRAN, Muhannad Bakir
  • Patent number: 7798817
    Abstract: High performance interconnect devices, structures, and fabrication methods are provided herein. According to some embodiments of the present invention, an interconnect device used to connect components or route signals in an integrated circuit can comprise multiple conductors. A first conductor of the interconnect device can define a first conductor axis, and a second conductor of the interconnect device can define a second conductor axis. The second conductor can be proximate the first conduct such that first conductor axis is substantially coaxially situated relative to the second conductor axis to provide a high performance interconnect having a coaxial alignment. The first conductor and the second conductor can define a gap disposed between and separating the conductors. Other embodiments are also claimed and described.
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: September 21, 2010
    Assignee: Georgia Tech Research Corporation
    Inventors: Paul A. Kohl, Ate He, Mark Cupta, Muhannad Bakir, Todd Spencer
  • Patent number: 7554347
    Abstract: Optoelectronic probe cards, methods of fabrication, and methods of use, are disclosed. Briefly described, one exemplary embodiment includes an optoelectronic probe card adapted to test an electrical quality and an optical quality of an optoelectronic structure under test having electrical and optical components.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: June 30, 2009
    Assignee: Georgia Tech Research Corporation
    Inventors: Tony Mule′, Hiren Thacker, Muhannad Bakir, James D. Meindl, Thomas K. Gaylord, Kevin P. Martin, Paul Kohl
  • Publication number: 20070105429
    Abstract: High performance interconnect devices, structures, and fabrication methods are provided herein. According to some embodiments of the present invention, an interconnect device used to connect components or route signals in an integrated circuit can comprise multiple conductors. A first conductor of the interconnect device can define a first conductor axis, and a second conductor of the interconnect device can define a second conductor axis. The second conductor can be proximate the first conduct such that first conductor axis is substantially coaxially situated relative to the second conductor axis to provide a high performance interconnect having a coaxial alignment. The first conductor and the second conductor can define a gap disposed between and separating the conductors. Other embodiments are also claimed and described.
    Type: Application
    Filed: November 6, 2006
    Publication date: May 10, 2007
    Applicant: GEORGIA TECH RESEARCH CORPORATION
    Inventors: PAUL KOHL, ATE HE, MARK CUPTA, MUHANNAD BAKIR, TODD SPENCER
  • Publication number: 20060209519
    Abstract: Devices having one or more of the following: an input/output (I/O) interconnect system, an optical I/O interconnect, an electrical I/O interconnect, a radio frequency I/O interconnect, are disclosed. A representative I/O interconnect system includes a first substrate and a second substrate. The first substrate includes a compliant pillar vertically extending from the first substrate. The compliant pillar is constructed a first material. The second substrate includes a compliant socket adapted to receive the compliant pillar. The compliant socket is constructed of a second material.
    Type: Application
    Filed: May 3, 2006
    Publication date: September 21, 2006
    Inventors: Muhannad Bakir, Kevin Martin, James Meindl
  • Publication number: 20060104566
    Abstract: Input/output (I/O) interconnects, fluidic I/O interconnects, electrical, optical, and fluidic I/O interconnects, devices incorporating the I/O interconnects, systems incorporating the I/O interconnects, and methods of fabricating the I/O interconnects, devices, and systems, are described herein.
    Type: Application
    Filed: October 28, 2005
    Publication date: May 18, 2006
    Inventors: Muhannad Bakir, James Meindl
  • Publication number: 20050257709
    Abstract: Systems and methods for three dimensional lithography, nano-indentation, and combinations thereof are disclosed.
    Type: Application
    Filed: October 31, 2003
    Publication date: November 24, 2005
    Inventors: Tony Mule, Paul Kohl, Muhannad Bakir, Kevin Martin, James Meindl, Hiren Thacker
  • Patent number: 6954576
    Abstract: Wafer-level electronic packages having waveguides and methods of fabricating chip-level electronic packages having waveguides are disclosed. A representative chip-level electronic package includes at least one waveguide having a waveguide core. In addition, another representative chip-level electronic package includes a waveguide having an air-gap cladding layer around a portion of the waveguide core. A representative method for fabricating a chip-level electronic package includes: providing a substrate having a passivation layer disposed on the substrate; disposing a waveguide core on a portion of the passivation layer; disposing a first sacrificial layer onto at least one portion of the passivation layer and the waveguide core; disposing an overcoat layer onto the passivation layer and the first sacrificial layer; and removing the first sacrificial layer to define an air-gap cladding layer within the overcoat polymer layer and around a portion of the waveguide core.
    Type: Grant
    Filed: July 21, 2004
    Date of Patent: October 11, 2005
    Assignee: Georgia Tech Research Corporation
    Inventors: Tony Mule′, Chirag Patel, James D. Meindl, Thomas K. Gaylord, Elias N. Glytsis, Kevin P. Martin, Stephen M. Schultz, Muhannad Bakir, Hollie Reed, Paul Kohl
  • Publication number: 20040264840
    Abstract: Wafer-level electronic packages having waveguides and methods of fabricating chip-level electronic packages having waveguides are disclosed. A representative chip-level electronic package includes at least one waveguide having a waveguide core. In addition, another representative chip-level electronic package includes a waveguide having an air-gap cladding layer around a portion of the waveguide core. A representative method for fabricating a chip-level electronic package includes: providing a substrate having a passivation layer disposed on the substrate; disposing a waveguide core on a portion of the passivation layer; disposing a first sacrificial layer onto at least one portion of the passivation layer and the waveguide core; disposing an overcoat layer onto the passivation layer and the first sacrificial layer; and removing the first sacrificial layer to define an air-gap cladding layer within the overcoat polymer layer and around a portion of the waveguide core.
    Type: Application
    Filed: July 21, 2004
    Publication date: December 30, 2004
    Inventors: Tony Mule, Chirag Patel, James D. Meindl, Thomas K. Gaylord, Elias N. Glytsis, Kevin P. Martin, Stephen M. Schultz, Muhannad Bakir, Hollie Reed, Paul Kohl
  • Patent number: 6788867
    Abstract: Optical interconnect layers and methods of fabrication thereof are described. In addition, the optical interconnect layers integrated into devices such as backplane (BP), printed wiring board (PWB), and multi-chip module (MCM) level devices are described. A representative optical interconnect layer includes a first cladding layer, a second cladding layer, one or more waveguides having a waveguide core and an air-gap cladding layer engaging a portion of waveguide core, wherein the first cladding layer and the second cladding layer engage the waveguide.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: September 7, 2004
    Assignee: Georgia Tech Research Corp.
    Inventors: Tony Mule′, James D. Meindl, Paul Kohl, Stephen M. Schultz, Thomas K. Gaylord, Elias N. Glytsis, Ricardo Villalaz, Muhannad Bakir, Hollie Reed
  • Patent number: 6785458
    Abstract: Wafer-level electronic packages having waveguides and methods of fabricating chip-level electronic packages having waveguides are disclosed. A representative chip-level electronic package includes at least one waveguide having a waveguide core. In addition, another representative chip-level electronic package includes a waveguide having an air-gap cladding layer around a portion of the waveguide core. A representative method for fabricating a chip-level electronic package includes: providing a substrate having a passivation layer disposed on the substrate; disposing a waveguide core on a portion of the passivation layer; disposing a first sacrificial layer onto at least one portion of the passivation layer and the waveguide core; disposing an overcoat layer onto the passivation layer and the first sacrificial layer; and removing the first sacrificial layer to define an air-gap cladding layer within the overcoat polymer layer and around a portion of the waveguide core.
    Type: Grant
    Filed: February 11, 2002
    Date of Patent: August 31, 2004
    Assignee: Georgia Tech Research Corporation
    Inventors: Tony Mule′, Chirag Patel, James D. Meindl, Thomas K. Gaylord, Elias N. Glytsis, Kevin P. Martin, Stephen M. Schultz, Muhannad Bakir, Hollie Reed, Paul Kohl
  • Publication number: 20040126076
    Abstract: Optical interconnect layers and methods of fabrication thereof are described. In addition, the optical interconnect layers integrated into devices such as backplane (BP), printed wiring board (PWB), and multi-chip module (MCM) level devices are described. A representative optical interconnect layer includes a first cladding layer, a second cladding layer, one or more waveguides having a waveguide core and an air-gap cladding layer engaging a portion of waveguide core, wherein the first cladding layer and the second cladding layer engage the waveguide.
    Type: Application
    Filed: December 11, 2003
    Publication date: July 1, 2004
    Inventors: Tony Mule, James D. Meindl, Paul Kohl, Stephen M. Schultz, Thomas K. Gaylord, Elias N. Glytsis, Ricardo Villalaz, Muhannad Bakir, Hollie Reed
  • Publication number: 20040017215
    Abstract: Optoelectronic probe cards, methods of fabrication, and methods of use, are disclosed. Briefly described, one exemplary embodiment includes an optoelectronic probe card adapted to test an electrical quality and an optical quality of an optoelectronic structure under test having electrical and optical components.
    Type: Application
    Filed: March 17, 2003
    Publication date: January 29, 2004
    Inventors: Tony Mule, Hiren Thacker, Muhannad Bakir, James D. Meindl, Thomas K. Gaylord, Kevin P. Martin, Paul Kohn
  • Publication number: 20030012539
    Abstract: Optical interconnect layers and methods of fabrication thereof are described. In addition, the optical interconnect layers integrated into devices such as backplane (BP), printed wiring board (PWB), and multi-chip module (MCM) level devices are described. A representative optical interconnect layer includes a first cladding layer, a second cladding layer, one or more waveguides having a waveguide core and an air-gap cladding layer engaging a portion of waveguide core, wherein the first cladding layer and the second cladding layer engage the waveguide.
    Type: Application
    Filed: April 29, 2002
    Publication date: January 16, 2003
    Inventors: Tony Mule', James D. Meindl, Paul Kohl, Stephen M. Schultz, Thomas K. Gaylord, Elias N. Glytsis, Ricardo Villalaz, Muhannad Bakir, Hollie Reed
  • Publication number: 20020136481
    Abstract: Wafer-level electronic packages having waveguides and methods of fabricating chip-level electronic packages having waveguides are disclosed. A representative chip-level electronic package includes at least one waveguide having a waveguide core. In addition, another representative chip-level electronic package includes a waveguide having an air-gap cladding layer around a portion of the waveguide core. A representative method for fabricating a chip-level electronic package includes: providing a substrate having a passivation layer disposed on the substrate; disposing a waveguide core on a portion of the passivation layer; disposing a first sacrificial layer onto at least one portion of the passivation layer and the waveguide core; disposing an overcoat layer onto the passivation layer and the first sacrificial layer; and removing the first sacrificial layer to define an air-gap cladding layer within the overcoat polymer layer and around a portion of the waveguide core.
    Type: Application
    Filed: February 11, 2002
    Publication date: September 26, 2002
    Inventors: Tony Mule', Chirag Patel, James D. Meindl, Thomas K. Gaylord, Elias N. Glytsis, Kevin P. Martin, Stephen M. Schultz, Muhannad Bakir, Hollie Reed, Paul Kohl