Patents by Inventor Mutsumi Kikuchi

Mutsumi Kikuchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230230788
    Abstract: In a case where a load current flows in an energized state where a power supply is connected to a load, it is assumed that a measured voltage fluctuates due to a voltage drop caused by contact resistance of a relay contact, and thus the relay state cannot be accurately diagnosed. A relay control device that controls a relay connected between a secondary battery and a load device calculates, in a failure diagnosis during energization with the relay being closed, a contact resistance value of the relay based on a voltage applied to the relay and a current flowing through the secondary battery, and determines a first threshold set as a variable value in accordance with a temperature change amount of the relay and compares the calculated contact resistance value with the first threshold to diagnose a failure of the relay.
    Type: Application
    Filed: February 5, 2021
    Publication date: July 20, 2023
    Applicant: Hitachi Astemo, Ltd.
    Inventors: Hikaru MIURA, Tatsumi YAMAUCHI, Mutsumi KIKUCHI
  • Patent number: 11418042
    Abstract: A battery management unit capable of more reliably turning off a high-voltage relay. A battery management unit 1 includes a high-voltage relay 5 serving as a switch unit that turns on/off electrical connection between a high-voltage battery 102, which is a secondary battery, and an external device, and a power source IC 6 serving as a disconnection control unit having a first disconnection processing function of turning off the high-voltage relay 5 at the time of abnormality of the battery management unit 1 and a second disconnection processing function of detecting an abnormality of the first disconnection processing function and turning off the high-voltage relay 5.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: August 16, 2022
    Assignee: HITACHI ASTEMO, LTD.
    Inventors: Tatsumi Yamauchi, Hikaru Miura, Mutsumi Kikuchi, Akihiro Machida, Masahiro Ueda, Kenichiro Tsuru
  • Patent number: 11201614
    Abstract: Disconnection of a circulation path through which a circulation current flows is detected while suppressing an increase in circuit scale. A battery monitoring device includes switching circuits that control currents flowing through coils of main contactors by being controlled to be turned on and off, freewheeling diodes that are connected to the coils of the main contactors to form circulation paths for circulating the currents, and a control unit. The control unit measures output voltages of the freewheeling diodes at an input terminal, and detects the disconnection of the circulation paths based on the output voltages of the freewheeling diodes.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: December 14, 2021
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Hikaru Miura, Akihiro Machida, Mutsumi Kikuchi, Tatsumi Yamauchi
  • Patent number: 11198352
    Abstract: A relay (25) connects and disconnects an electrical circuit to which an inverter (16) and an electricity storage device (19) are connected. A BCU (22) controls the electricity storage device (19). An HC (27) controls an electric motor (15), the inverter (16) and the BCU (22). The HC (27) and the BCU (22) respectively have FET switches (30, 31) for controlling supply and stop of the excitation current in the relay (25). When the electricity storage device (19) is determined to be in an abnormal state, the BCU (22) transmits an abnormal signal to the HC (27), and when a predetermined time has elapsed, turns off (opens) the first FET switch (30) of the BCU (22). The HC (27) executes stop processing based upon the abnormal signal received from the BCU (22) and then turns off (opens) the second FET switch (31) of the HC (27).
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: December 14, 2021
    Assignees: Hitachi Construction Machinery Co., Ltd., Hitachi Automotive Systems, Ltd.
    Inventors: Itaru Naya, Seiji Ishida, Ken Takeuchi, Mutsumi Kikuchi
  • Publication number: 20210104902
    Abstract: A battery management unit capable of more reliably turning off a high-voltage relay. A battery management unit 1 includes a high-voltage relay 5 serving as a switch unit that turns on/off electrical connection between a high-voltage battery 102, which is a secondary battery, and an external device, and a power source IC 6 serving as a disconnection control unit having a first disconnection processing function of turning off the high-voltage relay 5 at the time of abnormality of the battery management unit 1 and a second disconnection processing function of detecting an abnormality of the first disconnection processing function and turning off the high-voltage relay 5.
    Type: Application
    Filed: January 18, 2019
    Publication date: April 8, 2021
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Tatsumi YAMAUCHI, Hikaru MIURA, Mutsumi KIKUCHI, Akihiro MACHIDA, Masahiro UEDA, Kenichiro TSURU
  • Publication number: 20210091763
    Abstract: Disconnection of a circulation path through which a circulation current flows is detected while suppressing an increase in circuit scale. A battery monitoring device includes switching circuits that control currents flowing through coils of main contactors by being controlled to be turned on and off, freewheeling diodes that are connected to the coils of the main contactors to form circulation paths for circulating the currents, and a control unit. The control unit measures output voltages of the freewheeling diodes at an input terminal, and detects the disconnection of the circulation paths based on the output voltages of the freewheeling diodes.
    Type: Application
    Filed: June 13, 2018
    Publication date: March 25, 2021
    Inventors: Hikaru MIURA, Akihiro MACHIDA, Mutsumi KIKUCHI, Tatsumi YAMAUCHI
  • Patent number: 10788539
    Abstract: Provided are a battery monitoring device capable of suppressing a current flowing to individual battery cells and enhancing the safety thereof, even when there is a short circuit, for example, in a connection line connecting substrates having integrated circuits mounted thereon and a substrate having a microcomputer mounted thereon or a connection line connecting the substrates having the integrated circuits mounted thereon, and a battery system using the same. Resistors are provided in a positive electrode input line 13a connecting a positive electrode side of a battery pack group 200 and a total voltage detecting unit 13 and/or a negative electrode input line 13b connecting a negative electrode side of the battery pack group 200 and the total voltage detecting unit 13 and the resistors of the positive electrode input line 13a and/or negative electrode input line 13b are arranged on individual cell monitoring circuit boards 31 and 32.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: September 29, 2020
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Hikaru Miura, Akihiko Kudoh, Mutsumi Kikuchi, Tomonori Kanai
  • Publication number: 20200039339
    Abstract: A relay (25) connects and disconnects an electrical circuit to which an inverter (16) and an electricity storage device (19) are connected. A BCU (22) controls the electricity storage device (19). An HC (27) controls an electric motor (15), the inverter (16) and the BCU (22). The HC (27) and the BCU (22) respectively have FET switches (30, 31) for controlling supply and stop of the excitation current in the relay (25). When the electricity storage device (19) is determined to be in an abnormal state, the BCU (22) transmits an abnormal signal to the HC (27), and when a predetermined time has elapsed, turns off (opens) the first FET switch (30) of the BCU (22). The HC (27) executes stop processing based upon the abnormal signal received from the BCU (22) and then turns off (opens) the second FET switch (31) of the HC (27).
    Type: Application
    Filed: April 12, 2018
    Publication date: February 6, 2020
    Inventors: Itaru NAYA, Seiji ISHIDA, Ken TAKEUCHI, Mutsumi KIKUCHI
  • Patent number: 10554054
    Abstract: A battery system includes a battery module that is constituted with a plurality of serially connected battery cells, a plurality of integrated circuits that group the battery cells so as to perform processing on battery cells in each group, a first transmission path through which a command signal is transmitted via a first insulating circuit from a higher-order control circuit that controls the integrated circuits to a highest-order integrated circuit of the integrated circuit, a second transmission path through which a data signal collected by the integrated circuits is transmitted from the highest-order integrated circuit to a lowest-order integrated circuit, and a third transmission path through which the data signal is transmitted from the lowest-order integrated circuit to the higher-order control circuit via a second insulating circuit.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: February 4, 2020
    Assignees: Hitachi, Ltd., Hitachi Automotive Systems, Ltd.
    Inventors: Kenji Kubo, Akihiko Kudo, Mutsumi Kikuchi, Gosuke Shibahara
  • Patent number: 10534287
    Abstract: An image forming apparatus includes an image carrier that carries a latent image, a developer holder that holds developer for developing the latent image carried by the image carrier, and a layer-thickness restriction member that restricts the layer thickness of the developer held by the developer holder. When the developer holder approaches the layer-thickness restriction member, the layer-thickness restriction member moves away from the developer holder and then toward the developer holder.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: January 14, 2020
    Assignee: FUJI XEROX CO., LTD.
    Inventor: Mutsumi Kikuchi
  • Patent number: 10495692
    Abstract: The present invention enables correct detection of the state of a relay provided on each of the positive and negative terminal sides of a secondary battery. A positive-side main relay makes or breaks continuity between first and second positive contact points, and a negative-side main relay makes or breaks continuity between first and second negative contact points. A microcomputer can measure a first voltage between the first positive and first negative contact points, a second voltage between the second positive and first negative contact points, and a third voltage between the first positive and second negative contact points. The microcomputer detects the state of the positive-side main relay based on a voltage measurement result obtained when the first and second voltages are measured synchronously, and detects the state of the negative-side main relay based on a voltage measurement result obtained when the first and third voltages are measured synchronously.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: December 3, 2019
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Hikaru Miura, Mutsumi Kikuchi, Akihiko Kudoh, Tomonori Kanai
  • Patent number: 10495696
    Abstract: A battery system includes a battery module having a plurality of assembled batteries. Battery monitoring circuits are provided to correspond to each of the assembled batteries of the battery module. A control circuit controls operation of the battery monitoring circuits. A first signal transmission path transmits signals that are input and output between the battery monitoring circuits and the control circuit. A first isolation element is connected to the control circuit, and a second isolation element is connected to the battery monitoring circuit. The first signal transmission path is isolated from the control circuit by the second isolation element. The electrical potential of the first signal transmission path is a floating potential in relation to the electrical potentials of the control circuit and battery monitoring circuits.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: December 3, 2019
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Hikaru Miura, Mutsumi Kikuchi, Akihiko Kudoh, Tomonori Kanai
  • Patent number: 10454283
    Abstract: A battery system monitoring apparatus for monitoring a cell group having a plurality of battery cells, and includes a cell controller IC which monitors and controls the states of the plurality of battery cells. A battery controller controls the cell controller IC and a plurality of voltage detection lines measure the voltage across the terminals of the battery cell. The voltage detection lines connect positive and negative electrodes of the battery cell, respectively, to a plurality of voltage input terminals of the cell controller IC. A power line connects the positive electrode of the battery cell having the highest potential among the plurality of battery cells to a power supply terminal of the cell controller IC and a ground line which connects the negative electrode of the battery cell having the lowest potential among the plurality of battery cells to a ground terminal of the cell controller IC.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: October 22, 2019
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Akihiko Kudo, Mutsumi Kikuchi, Akihiko Emori
  • Patent number: 10359734
    Abstract: An image forming apparatus includes an image carrier, a developing roller, a biasing member, and a fluctuation preventing member. A latent image is formed on the image carrier. The developing roller is provided to face the image carrier and develops the latent image on the image carrier. The biasing member is provided on an outside of an end portion of the developing roller and biases the image carrier and the developing roller in a direction where the image carrier and the developing roller approach each other. The fluctuation preventing member is interposed between the image carrier and the developing roller and prevents, along with the biasing member, a fluctuation in a distance between a surface of the developing roller and a surface of the image carrier in a region where the image carrier and the developing roller face each other.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: July 23, 2019
    Assignee: FUJI XEROX CO., LTD.
    Inventors: Nao Kato, Mutsumi Kikuchi, Kenji Hayamizu, Shota Makita, Shinichi Oba, Iori Togu
  • Publication number: 20190049523
    Abstract: A battery system includes a battery module having a plurality of assembled batteries. Battery monitoring circuits are provided to correspond to each of the assembled batteries of the battery module. A control circuit controls operation of the battery monitoring circuits. A first signal transmission path transmits signals that are input and output between the battery monitoring circuits and the control circuit. A first isolation element is connected to the control circuit, and a second isolation element is connected to the battery monitoring circuit. The first signal transmission path is isolated from the control circuit by the second isolation element. The electrical potential of the first signal transmission path is a floating potential in relation to the electrical potentials of the control circuit and battery monitoring circuits.
    Type: Application
    Filed: October 12, 2018
    Publication date: February 14, 2019
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Hikaru MIURA, Mutsumi KIKUCHI, Akihiko KUDOH, Tomonori KANAI
  • Patent number: 10203629
    Abstract: Provided is an image forming apparatus including an image carrier on which a latent image is developed, a developing roller that is provided to face the image carrier to perform development for the latent image of the image carrier, an urging unit that urges the image carrier and the developing roller so that the image carrier and the developing roller approach each other, and a distance regulating unit that includes a viscoelastic body that is deformed according to a change of a distance between the image carrier and the developing roller, and regulates at least one of a maximum value of the distance between the image carrier and the developing roller and a minimum value of the distance between the image carrier and the developing roller so that the distance between the image carrier and the developing roller falls within a predetermined range.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: February 12, 2019
    Assignee: FUJI XEROX CO., LTD.
    Inventors: Shota Makita, Shinichi Oba, Mutsumi Kikuchi, Nao Kato, Iori Togu
  • Patent number: 10202041
    Abstract: A battery monitoring system, comprises a battery state detection circuit that detects battery states of a plurality of battery cells that are connected in series, based on respective cell voltages of the plurality of battery cells, and a control circuit that monitors state of a battery cell, based on each cell voltage of the plurality of battery cells. The control circuit inputs pseudo voltage information to the battery state detection circuit, and thereby diagnoses whether or not the battery state detection circuit is operating normally.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: February 12, 2019
    Assignees: Hitachi, Ltd., Hitachi Automotive Systems, Ltd.
    Inventors: Akihiko Kudo, Mutsumi Kikuchi, Gosuke Shibahara, Akihiko Emori, Yasuo Uemura, Tatsumi Yamauchi, Kenji Kubo, Masahito Sonehara, Masahiko Amano, Yoshinori Aoshima
  • Patent number: 10147983
    Abstract: A secondary battery system capable of acquiring an SOC of a battery with a simple computation without acquiring battery characteristics is to be provided. The secondary battery system according to the present invention is adapted to acquire a momentary SOC (charging SOC) by obtaining an initial value of an SOC from a CCV acquired during a charging period and adding an integrated value of a charge or discharge current to the initial value of the SOC, acquire a momentary SOC (discharging SOC) by obtaining an initial value of an SOC from a CCV acquired during a discharging period and adding an integrated value of a charge or discharge current to the initial value of the SOC, and acquire an SOC close to a true value by averaging the charging SOC and the discharging SOC.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: December 4, 2018
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Youhei Kawahara, Takeshi Inoue, Mutsumi Kikuchi, Keiichiro Ohkawa
  • Patent number: 10132871
    Abstract: A battery system includes a battery module having a plurality of assembled batteries. Battery monitoring circuits are provided to correspond to each of the assembled batteries of the battery module. A control circuit controls operation of the battery monitoring circuits. A first signal transmission path transmits signals that are input and output between the battery monitoring circuits and the control circuit. A first isolation element is connected to the control circuit, and a second isolation element is connected to the battery monitoring circuit. The first signal transmission path is isolated from the control circuit by the second isolation element. The electrical potential of the first signal transmission path is a floating potential in relation to the electrical potentials of the control circuit and battery monitoring circuits.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: November 20, 2018
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Hikaru Miura, Mutsumi Kikuchi, Akihiko Kudoh, Tomonori Kanai
  • Patent number: 10101404
    Abstract: A battery monitoring device includes a first voltage measurement unit, a second voltage measurement unit, a current measurement unit, a cell voltage ratio calculation unit, a cell voltage calculation unit, and a trigger signal generation unit. The cell voltage ratio is a ratio of an individual cell voltage measurement value to a total sum of all cell voltage measurement values. The cell voltage measurement value is equal to the cell voltage ratio multiplied by the total voltage of all of the battery cells constituting the battery pack.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: October 16, 2018
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Mutsumi Suzuki, Mutsumi Kikuchi