Patents by Inventor Mutsumi Kikuchi

Mutsumi Kikuchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9651625
    Abstract: A battery monitoring apparatus comprises a reception section to receive a radio signal and to output power and a demodulated signal according to the radio signal; a first power source circuit to perform power supply based on the power; a decode circuit to operate upon receiving the power supply from the first power source circuit and to output an activation signal and a command based on the demodulated signal; a second power source circuit to be activated according to the activation signal and to perform power supply; a battery monitoring circuit to operate upon receiving the power supply from the second power source circuit and to output a monitoring result of a state of the battery according to the command; and a transmission section to operate upon receiving the power supply from the second power source circuit and to wirelessly transmit the monitoring result.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: May 16, 2017
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Mutsumi Kikuchi, Akihiko Kudo, Tomonori Kanai, Hikaru Miura, Akihiko Emori
  • Patent number: 9647466
    Abstract: A battery system includes a battery module that is constituted with a plurality of serially connected battery cells, a plurality of integrated circuits that group the battery cells so as to perform processing on battery cells in each group, a first transmission path through which a command signal is transmitted via a first insulating circuit from a higher-order control circuit that controls the integrated circuits to a highest-order integrated circuit of the integrated circuit, a second transmission path through which a data signal collected by the integrated circuits is transmitted from the highest-order integrated circuit to a lowest-order integrated circuit, and a third transmission path through which the data signal is transmitted from the lowest-order integrated circuit to the higher-order control circuit via a second insulating circuit.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: May 9, 2017
    Assignees: Hitachi, Ltd., Hitachi Automotive Systems, Ltd.
    Inventors: Kenji Kubo, Akihiko Kudo, Mutsumi Kikuchi, Gosuke Shibahara
  • Patent number: 9568557
    Abstract: A battery monitoring device for monitoring a cell group made by connecting a plurality of single battery cells in series includes a reference voltage generation circuit configured to generate a variable reference voltage, a switching circuit configured to select, as a measurement target voltage, any one of a plurality of types of voltages including the cell voltages of the single battery cells in the cell group and the reference voltage, and an AD converter configured to measure the measurement target voltage which is selected by the switching circuit, and output a digital signal according to the measurement result.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: February 14, 2017
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Akihiko Kudo, Mutsumi Kikuchi, Tomonori Kanai, Tatsumi Yamauchi, Akihiro Machida
  • Publication number: 20170030976
    Abstract: A battery monitoring device which monitors a battery pack where a plurality of battery cells are connected in series, includes: a first voltage measurement unit which measures a voltage between terminals of each of the battery cells; a second voltage measurement unit which measures a voltage of two ends of a battery cell group where at least two or more battery cells are connected in series among the plurality of the battery cells; a current measurement unit which measures a current flowing through the battery pack; a cell voltage ratio calculation unit which calculates each call voltage ratio of the plurality of the battery cell based on the voltage between the terminals measured by the first voltage measurement unit; a cell voltage calculation unit which measures each cell voltage of the plurality of the battery cell at the time of measuring the voltage between the two ends based on the cell voltage ratio and the voltage between the two ends measured by the second voltage measurement unit; and a trigger sig
    Type: Application
    Filed: April 9, 2015
    Publication date: February 2, 2017
    Inventors: Mutsumi SUZUKI, Mutsumi KIKUCHI
  • Patent number: 9519027
    Abstract: A battery monitoring device for monitoring a cell group made by connecting a plurality of single battery cells in series including a first switching circuit configured to select, as a measurement target voltage, a type of voltage a differential amplifier circuit including a first input terminal and a second input terminal, configured to convert the measurement target voltage, which is selected by the first switching circuit and input between the first input terminal and the second input terminal, into a voltage in a predetermined range by performing differential amplification, and an AD converter configured to measure the measurement target voltage selected by the first switching circuit and converted by the differential amplifier circuit, and output a digital signal according to the measurement result, wherein an abnormality detection voltage, is output to the AD converter.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: December 13, 2016
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Akihiko Kudo, Mutsumi Kikuchi, Tomonori Kanai, Tatsumi Yamauchi, Akihiro Machida
  • Publication number: 20160351976
    Abstract: A secondary battery system capable of acquiring an SOC of a battery with a simple computation without acquiring battery characteristics is to be provided. The secondary battery system according to the present invention is adapted to acquire a momentary SOC (charging SOC) by obtaining an initial value of an SOC from a CCV acquired during a charging period and adding an integrated value of a charge or discharge current to the initial value of the SOC, acquire a momentary SOC (discharging SOC) by obtaining an initial value of an SOC from a CCV acquired during a discharging period and adding an integrated value of a charge or discharge current to the initial value of the SOC, and acquire an SOC close to a true value by averaging the charging SOC and the discharging SOC.
    Type: Application
    Filed: January 21, 2015
    Publication date: December 1, 2016
    Inventors: Youhei KAWAHARA, Takeshi INOUE, Mutsumi KIKUCHI, Keiichiro OHKAWA
  • Publication number: 20160327612
    Abstract: To provide a system for controlling power supplies in a device including batteries 12, 13, and 14 by wireless signals with high reliability. The system includes the batteries 12, 13, 14, a power supply control device 1 supplied with power from the batteries 12, 13, and 14, and a controller 15 for making wireless communication with the power supply control device 1. The power supply control device 1 includes a startup unit 37 for receiving a wireless startup signal transmitted from the controller 15 and controlling power supplying from the batteries to the power supply control device, and a communication unit 10 for making wireless communication with the controller. While the startup unit 37 is receiving the wireless startup signal, wireless communication is made by the communication unit 10.
    Type: Application
    Filed: January 20, 2014
    Publication date: November 10, 2016
    Inventors: Takahide TERADA, Mutsumi KIKUCHI
  • Publication number: 20160303977
    Abstract: A battery monitoring system, comprises a battery state detection circuit that detects battery states of a plurality of battery cells that are connected in series, based on respective cell voltages of the plurality of battery cells, and a control circuit that monitors state of a battery cell, based on each cell voltage of the plurality of battery cells. The control circuit inputs pseudo voltage information to the battery state detection circuit, and thereby diagnoses whether or not the battery state detection circuit is operating normally.
    Type: Application
    Filed: June 28, 2016
    Publication date: October 20, 2016
    Inventors: Akihiko KUDO, Mutsumi KIKUCHI, Gosuke SHIBAHARA, Akihiko EMORI, Yasuo UEMURA, Tatsumi YAMAUCHI, Kenji KUBO, Masahito SONEHARA, Masahiko AMANO, Yoshinori AOSHIMA
  • Publication number: 20160301112
    Abstract: Communication distance can be extended in a battery system that transmits states of the battery cells by wireless communication. Each of cell controllers wirelessly transmits measurement result of states of battery cells in cell groups to a battery controller, by using an electric power supplied from the battery cells in the cell groups. The battery controller continuously transmits unmodulated carrier wave to each of the cell controllers. Each of the cell controllers changes an impedance for the unmodulated carrier wave transmitted from the battery controller at a predetermined timing in dependence on the measurement result of the states of the battery cells in the cell groups. Due to this, the measurement result of the states of the battery cells in the cell groups is wirelessly transmitted to the battery controller.
    Type: Application
    Filed: January 27, 2014
    Publication date: October 13, 2016
    Applicant: Hitachi Automotive Systems, Ltd.
    Inventors: Takanori YAMAZOE, Hiroshi IWASAWA, Takahide TERADA, Takashi TAKEUCHI, Mutsumi KIKUCHI, Akihiko KUDO, Tomonori KANAI
  • Publication number: 20160241056
    Abstract: A battery monitoring and control integrated circuit is connected to a cell group having a plurality of series-connected single cells for monitoring and controlling the single cells, and includes: a first start input terminal for connecting to a DC signal generation circuit which generates a DC signal based on an AC start signal input from the outside; a start detection unit which detects the DC signal and activates the battery monitoring and control integrated circuit; and a start output unit which outputs the AC start signal to the outside after the activation of the battery monitoring and control integrated circuit.
    Type: Application
    Filed: April 29, 2016
    Publication date: August 18, 2016
    Applicant: Hitachi Automotive Systems, Inc.
    Inventors: Akihiko KUDO, Mutsumi KIKUCHI, Akihiko EMORI, Akihiro MACHIDA
  • Publication number: 20160226276
    Abstract: Even with a large ripple voltage superposed on a voltage of a battery cell, the voltage of the battery cell can be measured accurately. In a battery monitoring device, a supply circuit, based on a reference voltage inputted from an assembled battery, generates a driving voltage for driving each of switching elements, of a selection circuit and supplies the driving voltage to the selection circuit. The reference voltage is inputted from the assembled battery to the supply circuit via a detecting filter circuit. As a result, a time constant of a route through which the reference voltage is inputted from the assembled battery to the supply circuit is approximately equal to time constants of detecting filter circuits.
    Type: Application
    Filed: August 6, 2014
    Publication date: August 4, 2016
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Hiroshi IWASAWA, Akihiko KUDO, Mitsuo NODA, Mutsumi KIKUCHI, Tomonori KANAI
  • Patent number: 9404975
    Abstract: A battery monitoring system, comprises a battery state detection circuit that detects battery states of a plurality of battery cells that are connected in series, based on respective cell voltages of the plurality of battery cells, and a control circuit that monitors state of a battery cell, based on each cell voltage of the plurality of battery cells. The control circuit inputs pseudo voltage information to the battery state detection circuit, and thereby diagnoses whether or not the battery state detection circuit is operating normally.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: August 2, 2016
    Assignees: Hitachi, Ltd., Hitachi Automotive Systems, Ltd.
    Inventors: Akihiko Kudo, Mutsumi Kikuchi, Gosuke Shibahara, Akihiko Emori, Yasuo Uemura, Tatsumi Yamauchi, Kenji Kubo, Masahito Sonehara, Masahiko Amano, Yoshinori Aoshima
  • Publication number: 20160169976
    Abstract: Provided are a battery monitoring device capable of suppressing a current flowing to individual battery cells and enhancing the safety thereof, even when there is a short circuit, for example, in a connection line connecting substrates having integrated circuits mounted thereon and a substrate having a microcomputer mounted thereon or a connection line connecting the substrates having the integrated circuits mounted thereon, and a battery system using the same. Resistors are provided in a positive electrode input line 13a connecting a positive electrode side of a battery pack group 200 and a total voltage detecting unit 13 and/or a negative electrode input line 13b connecting a negative electrode side of the battery pack group 200 and the total voltage detecting unit 13 and the resistors of the positive electrode input line 13a and/or negative electrode input line 13b are arranged on individual cell monitoring circuit boards 31 and 32.
    Type: Application
    Filed: April 26, 2013
    Publication date: June 16, 2016
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Hikaru MIURA, Akihiko KUDOH, Mutsumi KIKUCHI, Tomonori KANAI
  • Patent number: 9356453
    Abstract: A battery monitoring and control integrated circuit is connected to a cell group having a plurality of series-connected single cells for monitoring and controlling the single cells, and includes: a first start input terminal for connecting to a DC signal generation circuit which generates a DC signal based on an AC start signal input from the outside; a start detection unit which detects the DC signal and activates the battery monitoring and control integrated circuit; and a start output unit which outputs the AC start signal to the outside after the activation of the battery monitoring and control integrated circuit.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: May 31, 2016
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Akihiko Kudo, Mutsumi Kikuchi, Akihiko Emori, Akihiro Machida
  • Patent number: 9340122
    Abstract: A battery system monitoring apparatus that monitors a battery system is provided having a cell group having a plurality of unit cells connected in series, including: a first control device that controls the cell group; and a plurality of voltage detection lines that connect positive electrodes and negative electrodes of the unit cells to the first control device, for measuring inter-terminal voltages of the unit cells. The first control device includes a balancing switch connected between the voltage detection line connected to the positive electrode of each unit cell and the voltage detection line connected to the negative electrode thereof for conducting balancing discharge of the unit cell, for each of the unit cells. A first resistor is disposed in series with each of the voltage detection lines, a first capacitor is connected between the voltage detection line, and a GND which is a lowest-level potential of the cell group.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: May 17, 2016
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Tatsumi Yamauchi, Akihiro Machida, Akihiko Kudo, Akihiko Emori, Mutsumi Kikuchi
  • Patent number: 9333874
    Abstract: A battery system for vehicle comprises a battery unit that is constituted with a plurality of serially connected cell groups each include a plurality of serially connected battery cells, integrated circuits that are each disposed in correspondence to one of the cell groups of the battery unit and each measure terminal voltages at the battery cells in the corresponding cell group, and a signal transmission path through which one of the integrated circuits is connected to another one of the integrated circuits or to a circuit other than that of the integrated circuits.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: May 10, 2016
    Assignees: Hitachi, Ltd., Hitachi Automotive Systems, Ltd.
    Inventors: Kenji Kubo, Akihiko Kudo, Mutsumi Kikuchi, Akihiko Emori
  • Publication number: 20160069962
    Abstract: A battery system includes a battery module having a plurality of assembled batteries. Battery monitoring circuits are provided to correspond to each of the assembled batteries of the battery module. A control circuit controls operation of the battery monitoring circuits. A first signal transmission path transmits signals that are input and output between the battery monitoring circuits and the control circuit. A first isolation element is connected to the control circuit, and a second isolation element is connected to the battery monitoring circuit. The first signal transmission path is isolated from the control circuit by the first isolation element and is isolated from the battery monitoring circuit by the second isolation element. The electrical potential of the first signal transmission path is a floating potential in relation to the electrical potentials of the control circuit and battery monitoring circuits.
    Type: Application
    Filed: April 15, 2013
    Publication date: March 10, 2016
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Hikaru MIURA, Mutsumi KIKUCHI, Akihiko KUDOH, Tomonori KANAI
  • Publication number: 20160061901
    Abstract: A battery system monitoring device includes a plurality of battery monitoring circuits, which is respectively provided in cell groups, and a balancing resistor. Each of the battery monitoring circuits includes a cell voltage measurement unit to measure a cell voltage of each single battery cell at predetermined timing, a discharge switch to switch a state of a discharge current which flows from each single battery cell through the balancing resistor, and a balancing control unit configured to control the discharge switch. A filter circuit is connected between the cell voltage measurement unit and each single battery cell. The cell voltage measurement unit determines whether a cell voltage is measured within a transient response period corresponding to a time constant of the filter circuit and corrects a measurement value of a cell voltage by using a correction value correcting a result of the determination.
    Type: Application
    Filed: April 19, 2013
    Publication date: March 3, 2016
    Inventors: Akihiko KUDO, Mutsumi KIKUCHI, Tomonori KANAI
  • Publication number: 20160006343
    Abstract: A power supply startup system activates a power supply of a device provided with a battery or the like at high speed by a wireless signal while suppressing current consumption on standby. The power supply startup system includes a battery, a device supplied with a power from the battery, and a controller which performs wireless communication with the device. The device includes a power supply section which generates a power supply from the battery, a startup section which receives a wireless startup signal transmitted by the controller and outputs a startup signal to the power supply section, a control section which controls the power supply section and the startup section, and a wireless communication section which performs wireless communication with the controller. The wireless startup signal includes at least two signal regions of a first stage and a second stage.
    Type: Application
    Filed: February 27, 2013
    Publication date: January 7, 2016
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Takahide TERADA, Mutsumi KIKUCHI, Akihiko KUDO, Takanori YAMAZOE, Hiroshi IWASAWA
  • Publication number: 20150357685
    Abstract: A battery system that is capable of transmitting the voltage value of each cell by means of wireless communication while suppressing costs and suppressing the number of components includes: a plurality of cells, each having a positive electrode terminal and a negative electrode terminal; voltage detection circuits that detect the voltages of the plurality cells; voltage detection lines that connect each of the positive electrode and negative electrode terminals of the cells to each voltage detection circuit; and an upper controller that performs wireless communication with the voltage detection circuits so as to receive, from each of the voltage detection circuits, the corresponding voltage of each cells. The voltage detection lines function as an antenna used to provide wireless communication between the voltage detection circuit and the upper controller.
    Type: Application
    Filed: January 27, 2014
    Publication date: December 10, 2015
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Hiroshi IWASAWA, Takahide TERADA, Mutsumi KIKUCHI, Takanori YAMAZOE, Tomonori KANAI, Akihiko KUDO, Takashi TAKEUCHI