Patents by Inventor Myron Weisfeldt

Myron Weisfeldt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8571663
    Abstract: Featured is an apparatus an apparatus including a monitoring and sensing means, an electrode patch and a control device operably coupled to each of the sensing means and the electrodes and outputs signals to the electrodes for purposes of stimulating the phrenic nerve to thereby cause breathing by natural contraction of the diaphragm. The control device is configured and arranged to initially localize the phrenic nerve with respect to a given set of electrodes that is effective, when appropriately energized, for stimulating the phrenic nerve to establish negative pressure induced respiration in the body, based on the output signal(s) from the monitoring and sensing means. After such initially localizing; the control device thereafter repetitively outputs stimulation signals via the given set of electrodes so as to thereby continuously stimulate negative pressure induced respiration. Also featured are methods related thereto.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: October 29, 2013
    Assignee: The Johns Hopkins University
    Inventors: Myron Weisfeldt, Soumyadipta Acharya, Courtney C. Haswell, Hargun S. Khanna, Yun Long, Vanessa C. Pau, Girish K. Singhal, Nimra Taqi, Lu Zhao
  • Publication number: 20110190845
    Abstract: Featured is an apparatus an apparatus including a monitoring and sensing means, an electrode patch and a control device operably coupled to each of the sensing means and the electrodes and outputs signals to the electrodes for purposes of stimulating the phrenic nerve to thereby cause breathing by natural contraction of the diaphragm. The control device is configured and arranged to initially localize the phrenic nerve with respect to a given set of electrodes that is effective, when appropriately energized, for stimulating the phrenic nerve to establish negative pressure induced respiration in the body, based on the output signal(s) from the monitoring and sensing means. After such initially localizing; the control device thereafter repetitively outputs stimulation signals via the given set of electrodes so as to thereby continuously stimulate negative pressure induced respiration. Also featured are methods related thereto.
    Type: Application
    Filed: May 4, 2009
    Publication date: August 4, 2011
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Myron Weisfeldt, Soumyadipta Acharya, Courtney C. Haswell, Hargun S. Khanna, Yun Long, Vanessa C. Pau, Girish K. Singhal, Nimra Taqi, Lu Zhao
  • Patent number: 5217010
    Abstract: A device for monitoring a patient or pacing a patient is disclosed which can safely operate in a MRI system. The device uses unique RF filtering and shielding to attenuate voltages on the leads resulting from the high frequency RF signals produced in the MRI. The device is uniquely shielded to prevent induced currents from disrupting the amplifying and processing electronics. The device uses an optional secondary low pass or band reject filter to eliminate interference from the MRI's gradient magnetic field. The device uses optional inductors placed close to electrodes to limit RF currents through the electrodes. Several embodiments of the RF filter are taught which depend on the number of sensing leads, whether the leads are shielded, whether the RF filter is contained in the electronic shielded housing or whether single or multistage filtering is employed. The device may operate as an extended ECG monitor or may be an implantable MRI safe pacemaker.
    Type: Grant
    Filed: May 28, 1991
    Date of Patent: June 8, 1993
    Assignee: The Johns Hopkins University
    Inventors: Joshua E. Tsitlik, Howard Levin, Henry Halperin, Myron Weisfeldt
  • Patent number: 4928674
    Abstract: A vest system for generating cyclic fluctuations in intrathoracic pressure for use in cardiopulmonary resuscitation and non-invasive circulatory assistance. The vest is preferably provided with a two bladder inflation system. A high pressure bladder contacts the chest wall while a bias bladder is disposed between the high pressure bladder and the vest material. The bias bladder is pressurized to press the high-pressure bladder tightly against the chest wall so that cyclic inflation of the high-pressure bladder can generate large changes in intrathoracic pressure. The bias bladder is released periodically to allow the chest to expand for adequate ventilation. Air flow into and out of each bladder is controlled by sequencing large bore 3-way and 2-way solenoid valves and the rate of air flow into the high-pressure bladder is controlled by a variable resistor.
    Type: Grant
    Filed: November 21, 1988
    Date of Patent: May 29, 1990
    Assignee: The Johns Hopkins University
    Inventors: Henry Halperin, Joshua Tsitlik, Myron Weisfeldt, Mark Gelfand