Patents by Inventor Naoki Toda

Naoki Toda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170355119
    Abstract: Provided is a screw that is for use in an injection molding machine and that makes it possible to benefit from the kneading effect of a multi-start screw while minimizing the received friction resistance. The screw for an injection molding machine is provided with a first stage 20 on the upstream side and a second stage 30 on the downstream side. The screw for an injection molding machine is characterized in that: the first stage 20 is provided with a compression section 22 comprising a main scraper 25 and an auxiliary scraper 26 having a smaller outer diameter than the main scraper 25; and the second stage 30 is provided with a multi-start screw section 31, said multi-start screw section being provided on the upstream side and comprising a plurality of scrapers, and a fin kneading section 32 provided downstream from the multi-start screw section.
    Type: Application
    Filed: January 15, 2015
    Publication date: December 14, 2017
    Inventors: Munehiro NOBUTA, Naoki TODA, Toshihiko KARIYA, Takeshi YAMAGUCHI, Kiyoshi KINOSHITA
  • Patent number: 9821498
    Abstract: In an injection molding method, using a heating cylinder having on the front end thereof a discharge nozzle, a single axis screw is rotatable inside the heating cylinder, a fiber-supplying device fills reinforcing fiber into the heating cylinder, and injection molding is performed while supplying the reinforcing fiber and the resin starting material separately and supplying the reinforcing fiber on the front side of the resin starting material. The method includes a plasticization process for obtaining a specified amount of a kneaded product by retracting the screw while rotating in the normal direction to melt the resin starting material and knead reinforcing fiber into the melted resin starting material, and an injection process for discharging the kneaded product from the discharge nozzle by advancing the screw. Reinforcing fiber is supplied into the heating cylinder in the injection process.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: November 21, 2017
    Assignees: U-MHI PLATECH CO., LTD., MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Ryoji Okabe, Toshihiko Kariya, Naoki Toda, Munehiro Nobuta
  • Publication number: 20170312954
    Abstract: Provided is an injection molding method for resin that contains reinforcing fiber, the method being capable of easily eliminating uneven distribution of added components. The injection molding method is provided with: a plasticizing step for supplying resin pellets P and added components to a cylinder equipped with a screw 10, which has a rotating axis as the center is capable of rotating normally and in reverse, and generating molten resin by rotating the screw 10 in the normal direction; and an injecting step for injecting the molten resin M comprising the added components into a cavity. In the plasticizing step, a reverse rotation operation for reversing the rotation of the screw 10 is performed or a screw-stopping operation of stopping the normal rotation of the screw 10 is performed with a prescribed timing and for a prescribed period.
    Type: Application
    Filed: June 25, 2015
    Publication date: November 2, 2017
    Inventors: Munehiro NOBUTA, Naoki TODA, Toshihiko KARIYA, Takeshi YAMAGUCHI, Kiyoshi KINOSHITA
  • Patent number: 9669573
    Abstract: The injection molding apparatus of the present invention includes: a heating cylinder; a screw that is provided rotatably in an inner portion of the heating cylinder; a resin feed hopper that feeds a resin pellet; and a fiber feed device that is provided ahead of the resin feed hopper and feeds reinforcing fibers into the heating cylinder. The screw includes a first stage that is located on a rear side, and in which the resin pellet is melted, and a second stage that is located on a front side, and in which the melted resin pellet and the reinforcing fibers are mixed, and a lead of a second flight provided in the second stage is larger than a lead of a first flight provided in the first stage.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: June 6, 2017
    Assignee: MITSUBISHI HEAVY INDUSTRIES PLASTIC TECHNOLOGY CO., LTD.
    Inventors: Toshihiko Kariya, Naoki Toda, Munehiro Nobuta, Kiyoshi Kinoshita, Takeshi Yamaguchi, Kosuke Ikeda, Yuji Suzumura, Hitoshi Onuma, Ryoji Okabe, Masanori Takahashi
  • Publication number: 20170015036
    Abstract: In an injection molding method of fiber reinforced resin of the present invention, a resin accumulation region is provided closer to a downstream side than an injection completion position inside a heating cylinder, an injection pressure is given to molten resin that occupies the resin accumulation region in an injection process of a preceding cycle, and a shear force is given to the molten resin that occupies the resin accumulation region in a plasticizing process of a subsequent cycle. An inside of massive reinforcing fibers F is impregnated with the molten resin by giving a high injection pressure to the molten resin that occupies the resin accumulation region. Next, dispersion of the reinforcing fibers is promoted by giving a shear force in the plasticizing process of the subsequent cycle.
    Type: Application
    Filed: May 30, 2014
    Publication date: January 19, 2017
    Inventors: Toshihiko KARIYA, Munehiro NOBUTA, Naoki TODA, Kiyoshi KINOSHITA, Takeshi YAMAGUCHI
  • Publication number: 20170001354
    Abstract: There is provided a screw of an injection molding machine that can eliminate uneven distribution of additive components without giving an excessive shear force to the additive components. An injection molding method of the present invention includes: a plasticizing process of feeding a resin pellet P and additive components to a heating cylinder 201 including a screw 10 that can rotate around a rotation axis C and can advance and retreat along the rotation axis C, and generating molten resin M by rotating the screw 10 in a normal direction; and an injection process of injecting to a cavity the molten resin M containing the additive components. In the plasticizing process, retreat operation of forcibly retreating the screw 10 is performed at a predetermined velocity by a predetermined stroke D1 or a predetermined time.
    Type: Application
    Filed: April 20, 2015
    Publication date: January 5, 2017
    Inventors: Munehiro NOBUTA, Naoki TODA, Toshihiko KARIYA, Takeshi YAMAGUCHI, Kiyoshi KINOSHITA
  • Publication number: 20170001353
    Abstract: There is provided a screw of an injection molding machine that can eliminate uneven distribution of reinforcing fibers without giving an excessive shear force to the reinforcing fibers. A screw is provided inside a heating cylinder of an injection molding machine to which a resin pellet is fed on an upstream side in a conveyance direction of resin and to which reinforcing fibers are fed on a downstream side therein, and includes: a first stage at which the resin pellet which is fed is melted; and a second stage that continues to the first stage, and at which molten resin and the reinforcing fibers are mixed with each other. A second flight provided at the second stage includes: a large-diameter flight with a relatively large outer diameter; and a small-diameter flight with a relatively small outer diameter.
    Type: Application
    Filed: June 9, 2014
    Publication date: January 5, 2017
    Applicant: Mitsubishi Heavy Industries Plastic Technology Co., Ltd.
    Inventors: Toshihiko KARIYA, Munehiro NOBUTA, Naoki TODA, Kiyoshi KINOSHITA, Takeshi YAMAGUCHI
  • Publication number: 20160356251
    Abstract: A fuel injection valve includes a body including a first chamber that supplies fuel of a first pressure, a second chamber that supplies fuel of a second pressure, and an injection hole, a valve chamber member including a valve chamber connectable to the first chamber and the second chamber, a control chamber member including a control chamber connectable to the first chamber, a needle pressed by pressure of fuel in the control chamber in a direction that causes fuel injection from the injection hole to stop, an actuator, a valve element that selectively connects the first chamber, second chamber, and the valve chamber according to the actuator extending and contracting, and a transmission mechanism that when the actuator extends, transmits the force to the needle as a force in a direction that causes fuel to be injected from the injection hole.
    Type: Application
    Filed: June 1, 2016
    Publication date: December 8, 2016
    Inventors: Motoya KANBARA, Fumiaki ARIKAWA, Satoshi SUGAWARA, Daiji UEDA, Hiroki TANADA, Toshiaki HIJIMA, Hitoshi MAEGAWA, Naoki TODA
  • Patent number: 9333690
    Abstract: A method for manufacturing a fiber-reinforced composite material of the present invention includes: the step (a) of placing a non-woven fabric N made of a reinforcement fiber in a movable mold 12; and the step (b) of moving the movable mold 12 toward a fixed mold 11 to close the mold and then injecting a thermoplastic resin into the mold to obtain a molded article formed of the non-woven fabric N and the thermoplastic resin. The mechanical strength of the obtained fiber-reinforced composite material can be enhanced by applying an injection compression molding process as the injection molding process in the step (b).
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: May 10, 2016
    Assignee: MITSUBISHI HEAVY INDUSTRIES PLASTIC TECHNOLOGY
    Inventors: Masahiro Bessho, Shiki Matsuo, Wataru Nishimura, Toshihiko Kariya, Naoki Toda
  • Patent number: 9322376
    Abstract: An internal combustion engine has an ignition promotion unit that has a function of promoting ignition of fuel sprays formed by the small quantity injections by supplying the fuel sprays with electric energy. The engine is provided with a control device which has a combustion control unit that carries out processing of causing the fuel injection valve to perform the plurality of times of small quantity injections so that fuel sprays formed by the first-time small quantity injection from among the plurality of times of small quantity injections are connected with one another by the fuel sprays formed by the subsequent small quantity injections from among the plurality of times of small quantity injections.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: April 26, 2016
    Assignee: IMAGINEERING, INC.
    Inventors: Yuji Ikeda, Naoki Toda, Shigeo Nomura
  • Publication number: 20160009010
    Abstract: The injection molding apparatus of the present invention includes: a heating cylinder; a screw that is provided rotatably in an inner portion of the heating cylinder; a resin feed hopper that feeds a resin pellet; and a fiber feed device that is provided ahead of the resin feed hopper and feeds reinforcing fibers into the heating cylinder. The screw includes a first stage that is located on a rear side, and in which the resin pellet is melted, and a second stage that is located on a front side, and in which the melted resin pellet and the reinforcing fibers are mixed, and a lead of a second flight provided in the second stage is larger than a lead of a first flight provided in the first stage.
    Type: Application
    Filed: November 6, 2013
    Publication date: January 14, 2016
    Inventors: Toshihiko KARIYA, Naoki TODA, Munehiro NOBUTA, Kiyoshi KINOSHITA, Takeshi YAMAGUCHI, Kosuke IKEDA, Yuji SUZUMURA, Hitoshi ONUMA, Ryoji OKABE, Masanori TAKAHASHI
  • Publication number: 20160001477
    Abstract: In an injection molding method, using a heating cylinder having on the front end thereof a discharge nozzle, a single axis screw is rotatable inside the heating cylinder, a fiber-supplying device fills reinforcing fiber into the heating cylinder, and injection molding is performed while supplying the reinforcing fiber and the resin starting material separately and supplying the reinforcing fiber on the front side of the resin starting material. The method includes a plasticization process for obtaining a specified amount of a kneaded product by retracting the screw while rotating in the normal direction to melt the resin starting material and knead reinforcing fiber into the melted resin starting material, and an injection process for discharging the kneaded product from the discharge nozzle by advancing the screw. Reinforcing fiber is supplied into the heating cylinder in the injection process.
    Type: Application
    Filed: March 25, 2013
    Publication date: January 7, 2016
    Inventors: Ryoji OKABE, Toshihiko KARIYA, Naoki TODA, Munehiro NOBUTA
  • Patent number: 9085103
    Abstract: A plasticizing screw for injection molding according to the present invention is a plasticizing screw for injection molding that is installed in an injection molding machine which performs injection molding by plasticizing granular thermoplastic resin feedstock containing reinforcement fibers, and includes a shaft, a flight, and a mixer. The mixer is provided in plural stages in an axial direction, and the number of fins of the mixer of each stage increases toward a leading end side in the axial direction from a rear end side in the axial direction. Further, the protrusion height of each fin from the peripheral surface of the shaft is lower than the protrusion height of the flight from the peripheral surface of the shaft.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: July 21, 2015
    Assignee: MITSUBISHI HEAVY INDUSTRIES PLASTIC TECHNOLOGY CO., LTD.
    Inventors: Toshihiko Kariya, Naoki Toda, Munehiro Nobuta
  • Patent number: 8932506
    Abstract: The resin injection molding method of the present invention is a method for molding resins inside a cavity formed within a mold. The method comprises injecting resins into the cavity through a plurality of paths installed so as to be openable and closable and optionally maintaining the resin inside the cavity at a pressure; closing each of the plurality of paths such that the resins injected from each path converge, there being a time difference between when a first path and a second path of the plurality of paths are closed; and solidifying at least the resin which is injected from the path closed earliest with a crystallinity greater than or equal to a predetermined crystallinity degree.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: January 13, 2015
    Assignee: Mitsubishi Heavy Industries Plastic Technology
    Inventors: Naoki Toda, Satoshi Imaeda, Takeshi Yamaguchi, Toshihiko Kariya
  • Patent number: 8904997
    Abstract: A fuel injection control system for an internal combustion engine is provided which is designed to perform pilot injection of fuel into the engine through a fuel injector prior to main injection. The system monitors a combustion state parameter representing a combustion state of the fuel within a combustion chamber of the engine which has been sprayed in the event of the pilot injection. When the combustion state parameter is determined as lying out of a stable combustion range where the fuel is to burn stably, the system changes the number of pilot injections to be executed prior to the main injection and/or the quantity of the fuel to be sprayed in each pilot injection, thereby enhancing the ignitability of the fuel in the pilot injection.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: December 9, 2014
    Assignee: Denso Corporation
    Inventors: Hiroki Watanabe, Naoki Toda, Shinya Hoshi, Satoru Sasaki
  • Patent number: 8900506
    Abstract: A plasticizing screw for injection molding according to the present invention is installed in an injection molding machine that performs injection molding by plasticizing thermoplastic resin feedstock containing reinforcement fibers, and includes a shaft, a main flight, and a sub-flight. The protrusion height of the main flight from the circumferential surface of the shaft is formed to be constant in at least an area in which the sub-flight is provided.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: December 2, 2014
    Assignee: Mitsubishi Heavy Industries Plastic Technology
    Inventors: Toshihiko Kariya, Naoki Toda, Munehiro Nobuta
  • Publication number: 20140190452
    Abstract: An internal combustion engine has an ignition promotion unit that has a function of promoting ignition of fuel sprays formed by the small quantity injections by supplying the fuel sprays with electric energy. The engine is provided with a control device which has a combustion control unit that carries out processing of causing the fuel injection valve to perform the plurality of times of small quantity injections so that fuel sprays formed by the first-time small quantity injection from among the plurality of times of small quantity injections are connected with one another by the fuel sprays formed by the subsequent small quantity injections from among the plurality of times of small quantity injections.
    Type: Application
    Filed: June 29, 2012
    Publication date: July 10, 2014
    Applicant: IMAGINEERING, INC.
    Inventors: Yuji Ikeda, Naoki Toda, Shigeo Nomura
  • Patent number: 8741193
    Abstract: The injection molding method for injecting a resin into a cavity formed within a mold is provided with a heating step in which the temperature of a cavity surface forming the cavity of the mold is heated to a temperature equal to or higher than a heat distortion temperature of the resin and an injection step in which after the heating step, during a decrease in temperature of the cavity surface of the mold, the resin is injected into the cavity.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: June 3, 2014
    Assignee: Mitsubishi Heavy Industries Plastic Technology Co., Ltd.
    Inventors: Naoki Toda, Satoshi Imaeda, Toshihiko Kariya, Takeshi Yamaguchi
  • Publication number: 20130200552
    Abstract: A plasticizing screw for injection molding according to the present invention is a plasticizing screw for injection molding that is installed in an injection molding machine which performs injection molding by plasticizing granular thermoplastic resin feedstock containing reinforcement fibers, and includes a shaft, a flight, and a mixer. The mixer is provided in plural stages in an axial direction, and the number of fins of the mixer of each stage increases toward a leading end side in the axial direction from a rear end side in the axial direction. Further, the protrusion height of each fin from the peripheral surface of the shaft is lower than the protrusion height of the flight from the peripheral surface of the shaft.
    Type: Application
    Filed: October 29, 2010
    Publication date: August 8, 2013
    Applicant: Mitsubishi Heavy Industries Plastic Technology Co., Ltd.
    Inventors: Toshihiko Kariya, Naoki Toda, Munehiro Nobuta
  • Publication number: 20130099421
    Abstract: A plasticizing screw for injection molding according to the present invention is installed in an injection molding machine that performs injection molding by plasticizing thermoplastic resin feedstock containing reinforcement fibers, and includes a shaft, a main flight, and a sub-flight. The protrusion height of the main flight from the circumferential surface of the shaft is formed to be constant in at least an area in which the sub-flight is provided.
    Type: Application
    Filed: October 25, 2010
    Publication date: April 25, 2013
    Applicant: MITSUBISHI HEAVY INDUSTRIES PLASTIC TECHNOLOGY CO. LTD
    Inventors: Toshihiko Kariya, Naoki Toda, Munehiro Nobuta