Patents by Inventor Naoko Matsuyama

Naoko Matsuyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6555421
    Abstract: A method and apparatus for manufacturing a semiconductor device can achieve the formation of thin films in a uniform thickness on a substrate. The method and apparatus includes a film-forming process in which film-forming gases 14, 15 are caused to flow over a surface of a substrate 11 substantially in parallel therewith to form thin films on the substrate surface. The film-forming process includes an initial film-forming step for forming a first thin film on the surface of the substrate 11 under a first film-forming conditions and a main film-forming step for forming, on the first thin film acting as a backing layer, a second thin film of a thickness greater than that of the first thin film under a second film-forming condition which differs from the first film-forming condition.
    Type: Grant
    Filed: January 12, 2001
    Date of Patent: April 29, 2003
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Naoko Matsuyama, Sinya Sasaki
  • Patent number: 6472639
    Abstract: Uniformity of temperature is established within a wafer, and a higher throughput is achieved while the wafer heating time is dramatically reduced by combining lamp heating with hot-wall heating. Lamps 10 are provided outside the furnace body 3 of a hot-wall CVD apparatus. The hot-wall reactor furnace body 3 is preheated to a prescribed temperature. Wafers W are loaded into the furnace body 3, and these wafers W are rapidly heated mediately thereafter to the desired temperature by light emitted by the lamps 10. The lamps 10 are switched off following heating, and the wafer temperature is allowed to reach a uniform state as a result of heat diffusion in the wafers in the hot-wall reactor furnace body 3. It is also possible to adopt an arrangement in which preheating commensurate with the cooling occurring during the transport period is performed before the wafers W are loaded into the furnace body 3. the wafers W are then loaded into the reactor furnace body 3.
    Type: Grant
    Filed: March 29, 2002
    Date of Patent: October 29, 2002
    Assignee: Kokusai Electric Co., Ltd.
    Inventors: Eisuke Nishitani, Katsuhisa Kasanami, Naoko Matsuyama, Shinya Sasaki
  • Publication number: 20020096507
    Abstract: Uniformity of temperature is established within a wafer, and a higher throughput is achieved while the wafer heating time is dramatically reduced by combining lamp heating with hot-wall heating. Lamps 10 are provided outside the furnace body 3 of a hot-wall CVD apparatus. The hot-wall reactor furnace body 3 is preheated to a prescribed temperature. Wafers W are loaded into the furnace body 3, and these wafers W are rapidly heated immediately thereafter to the desired temperature by light emitted by the lamps 10. The lamps 10 are switched off following heating, and the wafer temperature is allowed to reach a uniform state as a result of heat diffusion in the wafers in the hot-wall reactor furnace body 3. It is also possible to adopt an arrangement in which preheating commensurate with the cooling occurring during the transport period is performed before the wafers W are loaded into the furnace body 3, the wafers W are then loaded Into the reactor furnace body 3.
    Type: Application
    Filed: March 29, 2002
    Publication date: July 25, 2002
    Applicant: Kokusai Electric Co., Ltd.
    Inventors: Eisuke Nishitani, Katsuhisa Kasanami, Naoko Matsuyama, Shinya Sasaki
  • Patent number: 6414280
    Abstract: Uniformity of temperature is established within a wafer, and a higher throughput is achieved while the wafer heating time is dramatically reduced by combining lamp heating with hot-wall heating. Lamps 10 are provided outside the furnace body 3 of a hot-wall CVD apparatus. The hot-wall reactor furnace body 3 is preheated to a prescribed temperature. Wafers W are loaded into the furnace body 3, and these wafers W are rapidly heated immediately thereafter to the desired temperature by light emitted by the lamps 10. The lamps 10 are switched off following heating, and the wafer temperature is allowed to reach a uniform state as a result of heat diffusion in the wafers in the hot-wall reactor furnace body 3.
    Type: Grant
    Filed: March 30, 2000
    Date of Patent: July 2, 2002
    Assignee: Kokusai Electric Co., Ltd.
    Inventors: Eisuke Nishitani, Katsuhisa Kasanami, Naoko Matsuyama, Shinya Sasaki
  • Publication number: 20010008782
    Abstract: A method and apparatus for manufacturing a semiconductor device can achieve the formation of thin films in a uniform thickness on a substrate. The method and apparatus includes a film-forming process in which film-forming gases 14, 15 are caused to flow over a surface of a substrate 11 substantially in parallel therewith to form thin films on the substrate surface. The film-forming process includes an initial film-forming step for forming a first thin film on the surface of the substrate 11 under a first film-forming conditions and a main film-forming step for forming, on the first thin film acting as a backing layer, a second thin film of a thickness greater than that of the first thin film under a second film-forming condition which differs from the first film-forming condition.
    Type: Application
    Filed: January 12, 2001
    Publication date: July 19, 2001
    Applicant: Hitachi Kokusai Electric Inc.
    Inventors: Naoko Matsuyama, Sinya Sasaki
  • Publication number: 20010002585
    Abstract: A method and apparatus for producing a semiconductor device can provide a uniform film on a substrate. A substrate is introduced into a reaction chamber or tube (51) which has gas feed ports (52, 53) and gas exhaust ports (54, 55). The substrate in the reaction tube (51) is heated to substantially a film forming temperature while supplying a prescribed gas to the reaction tube (51) through the gas feed ports (52, 53) and exhausting the prescribed gas from the reaction tube (51) through all the exhaust ports (54, 55). A film-forming gas is supplied to the reaction tube (51) to form a film on the substrate. The substrate with the film formed thereon is taken out of the reaction tube (51). Moreover, after the film formation on the substrate, a prescribed gas is supplied to the reaction tube (51) from the gas feed ports (52, 53) while being exhausted from the reaction tube (51) through all the exhaust ports (54, 55), thereby removing a residual gas in the reaction tube.
    Type: Application
    Filed: December 20, 2000
    Publication date: June 7, 2001
    Inventors: Masanori Sakai, Masayuki Tsuneda, Naoko Matsuyama, Hideharu Itatani, Michihide Nakamure
  • Patent number: 6204199
    Abstract: A method and apparatus for producing a semiconductor device can provide a uniform film on a substrate. A substrate is introduced into a reaction chamber or tube (51) which has gas feed ports (52, 53) and gas exhaust ports (54, 55). The substrate in the reaction tube (51) is heated to substantially a film forming temperature while supplying a prescribed gas to the reaction tube (51) through the gas feed ports (52, 53) and exhausting the prescribed gas from the reaction tube (51) through all the exhaust ports (54, 55). A film-forming gas is supplied to the reaction tube (51) to form a film on the substrate. The substrate with the film formed thereon is taken out of the reaction tube (51). Moreover, after the film formation on the substrate, a prescribed gas is supplied to the reaction tube (51) from the gas feed ports (52, 53) while being exhausted from the reaction tube (51) through all the exhaust ports (54, 55), thereby removing a residual gas in the reaction tube.
    Type: Grant
    Filed: September 10, 1999
    Date of Patent: March 20, 2001
    Assignee: Kokusai Electric Co., Ltd.
    Inventors: Masanori Sakai, Masayuki Tsuneda, Naoko Matsuyama, Hideharu Itatani, Michihide Nakamure
  • Patent number: 5239108
    Abstract: A process for producing an aliphatic or alicyclic aldehyde is disclosed, which process comprises the step of hydrogenating an aliphatic or alicyclic carboxylic acid or a derivative thereof with molecular hydrogen in the presence of a catalyst, wherein the catalyst is a zirconium oxide catalyst which contains chromium as an essential component, has a weakly basic site amount of more than 0.03 mmol/g as determined by a temperature programmed desorption method using carbon dioxide as an adsorbate in which the amount of carbon dioxide desorbed in the temperature range of from 100.degree. to 250.degree. C. is measured, and has pores having a radius of from 20 to 500 .ANG. in an amount of not less than 0.1 cc/g and pores having a radius of from 1,000 to 50,000 .ANG. in an amount of not less than 0.05 cc/g as measured with a mercury porosimeter. Aldehydes can be obtained directly from aliphatic or alicyclic carboxylic acids or derivatives thereof in high yield.
    Type: Grant
    Filed: October 20, 1992
    Date of Patent: August 24, 1993
    Assignee: Mitsubishi Kasei Corporation
    Inventors: Toshiharu Yokoyama, Naoko Matsuyama, Takao Maki