Patents by Inventor Naoshi Itabashi

Naoshi Itabashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9076637
    Abstract: The invention provides a plasma processing apparatus and a dry etching method for etching a multilayered film structure having steps with high accuracy. The plasma processing apparatus comprises a vacuum reactor 107, a lower electrode 113 placed within a processing chamber of the vacuum reactor and having a wafer 112 to be etched mounted on the upper surface thereof, bias supplying units 118 and 120 for supplying high frequency power for forming a bias potential to the lower electrode 113, a gas supply means 111 for feeding reactive gas into the processing chamber, an electric field supplying means 101 through 103 for supplying a magnetic field for generating plasma in the processing chamber, and a control unit 127 for controlling the distribution of ion energy in the plasma being incident on the wafer 112 via the high frequency power.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: July 7, 2015
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Masahito Mori, Naoyuki Kofuji, Naoshi Itabashi
  • Patent number: 9034270
    Abstract: Sterilization and cleaning of an escalator hand rail are performed. A sterilization and cleaning device including a hand rail; a plasma source for irradiating the hand rails with ions or radicals or UV light; an enclosure for housing the plasma source; a power source for generating plasma; a fan for generating relatively negative pressure in the enclosure; filter units for removing removed bacteria, viruses, and organic matters such as hand marks; and filter plates located backward and forward of a moving direction of the hand rail in the enclosure along the hand rail is provided.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: May 19, 2015
    Assignee: Hitachi, Ltd.
    Inventors: Hiroyuki Kobayashi, Takumi Tandou, Naoshi Itabashi
  • Publication number: 20150010902
    Abstract: Disclosed is an apparatus for monitoring airborne microorganisms composed of: a chassis, which has a fan for flowing the air therein from the outside at a portion thereof and of which inside is spatially segmented by partition plates for performing a plurality of steps; a perforated plate, which is disposed at a portion of the chassis and has a plurality of nozzles for focusing split air flows passing through a plurality of spaces in a given direction; a capturing plate, which has a plurality of trapping surfaces at the positions opposite to the plurality of nozzles of the perforated plate; a capturing plate control part, which moves the capturing plate relative to the perforated plate; and an optical detection part for fluorescence generated from the microorganisms on the trapping surface of the capturing plate.
    Type: Application
    Filed: February 8, 2012
    Publication date: January 8, 2015
    Applicant: Hitachi, Ltd.
    Inventors: Kei Takenaka, Hideyuki Noda, Naoshi Itabashi, Yoshiaki Yazawa
  • Patent number: 8926790
    Abstract: The invention provides a plasma processing apparatus aimed at suppressing the corrosion caused by reactive gas and heavy-metal contamination caused by plasma damage of components constituting the high-frequency electrode and gas supply unit. The plasma processing apparatus comprises a processing chamber 1 for subjecting a processing substrate 4 to plasma processing, gas supply means 17, 16 and 11 for feeding gas to the processing chamber 1, and an antenna electrode 10 for supplying high-frequency radiation for discharging the gas to generate plasma, wherein the gas supply means includes a gas shower plate 11 having gas discharge holes on the surface exposed to plasma, and a portion of or a whole surface of the conductor 10 exposed to gas constituting the antenna-electrode side of the gas supply means is subjected to ceramic spraying containing no heavy metal to form a protecting film 12.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: January 6, 2015
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Tsutomu Tetsuka, Toshio Masuda, Naoshi Itabashi, Masanori Kadotani, Takashi Fujii
  • Patent number: 8865403
    Abstract: An object of the present invention relates to distinguishing, from a fluorophore of an unreacted substrate, a single fluorophore attached to a nucleotide that is incorporated into a probe by a nucleic acid synthesis. The present invention relates to a nucleic acid analyzing device that analyzes a nucleic acid in sample by fluorescence, wherein a localized surface plasmon is generated by illumination, and a probe for analyzing the nucleic acid in the sample is on the site where the surface plasmon is generated. According to the present invention, since it is possible to efficiently produce fluorescence intensifying effects due to the surface plasmon and to immobilize the probe to a region within the reach of the fluorescence intensifying effects, it becomes possible to measure a nucleic acid synthesis without removing unreacted nucleotide to which fluorophores are attached.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: October 21, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Masatoshi Narahara, Toshiro Saito, Naoshi Itabashi, Jiro Yamamoto, Hiroyuki Uchiyama
  • Publication number: 20140243214
    Abstract: In an FET configuration having a channel with a small thickness, transistor characteristics vary for different FETs in the same array, and therefore when the same gate voltage is applied, the sensitivities of DNA detection may be insufficient. To this end, the change in the channel current when DNA passes through the nanopore is detected while applying an optimum gate voltage for each nanopore FET to attain a predetermined channel current value to a plurality of nanopore FETs disposed on the same substrate, and four types of bases constituting DNA are distinguished.
    Type: Application
    Filed: February 26, 2013
    Publication date: August 28, 2014
    Applicant: Hitachi, Ltd.
    Inventors: Takanobu Haga, Itaru Yanagi, Naoshi Itabashi, Yoshimitsu Yanagawa, Takeshi Ohura, Takashi Anazawa
  • Publication number: 20140162351
    Abstract: An operating efficiency of an observer is considerably restricted since it is not known at which position a culturing cell is disposed among a great number of pieces of holes of a culturing sheet. The culturing sheet is configured by a partitioning wall, a hole isolated by the partitioning wall, a local culturing region formed with plural local culturing region pillars a height of which is lower than that of the partitioning wall at a portion of a bottom face, and identification mark pillars formed at an identification mark region which differs from the culturing region at the bottom face of the hole. An identification mark is prevented from being unable to be optically recognized by adhering a spheroid to the identification mark region by making a diameter and a height of the identification mark pillar smaller than a diameter and a height of the local culturing pillar.
    Type: Application
    Filed: August 29, 2011
    Publication date: June 12, 2014
    Applicant: HITACHI, LTD.
    Inventors: Jiro Yamamoto, Naoshi Itabashi, Taku Saito, Akiko Hisada, Ryosuke Takahashi, Hiroshi Sonoda
  • Publication number: 20140116621
    Abstract: The invention provides a plasma processing apparatus and a dry etching method for etching a multilayered film structure having steps with high accuracy. The plasma processing apparatus comprises a vacuum reactor 107, a lower electrode 113 placed within a processing chamber of the vacuum reactor and having a wafer 112 to be etched mounted on the upper surface thereof, bias supplying units 118 and 120 for supplying high frequency power for forming a bias potential to the lower electrode 113, a gas supply means 111 for feeding reactive gas into the processing chamber, an electric field supplying means 101 through 103 for supplying a magnetic field for generating plasma in the processing chamber, and a control unit 127 for controlling the distribution of ion energy in the plasma being incident on the wafer 112 via the high frequency power.
    Type: Application
    Filed: September 20, 2013
    Publication date: May 1, 2014
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Masahito MORI, Naoyuki KOFUJI, Naoshi ITABASHI
  • Publication number: 20130323839
    Abstract: Provided is a culture sheet which enables a technique for forming a three-dimensional tissue having uniform diameter without applying any chemical on the surface of a culture substrate. On the culture sheet (150) of the culture substrate, a plurality of holes (152) are formed and nanopillars (153), which are capable of controlling the adhesiveness and migration ability of cells, are formed on the bottom surface of each hole (152), said bottom face serving as a culture surface. The culture surface of each hole (151) is provided with a partition wall (152) and the internal nanopillars (153) are formed in the vicinity of the center of the hole (151). Owing to this configuration, the interaction among the disseminated cells can be restricted so that uniformly sized three-dimensional structures of the cells can be formed.
    Type: Application
    Filed: December 22, 2010
    Publication date: December 5, 2013
    Applicant: Hitachi, Ltd.
    Inventors: Ryosuke Takahashi, Akiko Hisada, Hiroshi Sonoda, Taku Saito, Naoshi Itabashi, Jiro Yamamoto
  • Patent number: 8546266
    Abstract: The invention provides a plasma processing apparatus and a dry etching method for etching a multilayered film structure having steps with high accuracy. The plasma processing apparatus comprises a vacuum reactor 107, a lower electrode 113 placed within a processing chamber of the vacuum reactor and having a wafer 112 to be etched mounted on the upper surface thereof, bias supplying units 118 and 120 for supplying high frequency power for forming a bias potential to the lower electrode 113, a gas supply means 111 for feeding reactive gas into the processing chamber, an electric field supplying means 101 through 103 for supplying a magnetic field for generating plasma in the processing chamber, and a control unit 127 for controlling the distribution of ion energy in the plasma being incident on the wafer 112 via the high frequency power.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: October 1, 2013
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Masahito Mori, Naoyuki Kofuji, Naoshi Itabashi
  • Publication number: 20130202479
    Abstract: An apparatus which determines activeness/inactiveness of bacteria in real time by measuring a specific light emission spectrum upon performing sterilization using plasma to highly efficiently sterilize is provided. As solving means, plasma is irradiated on a processing target from a plasma source connected to an alternate-current power supply and light emission of the processing target caused by the irradiation of plasma is detected by a light emission intensity detector unit. Particularly, by detecting wavelength intensity of hydrogen or hydroxyl group, activeness/inactiveness of bacteria can be determined at an early stage. Thus, an appropriate output of a power supply for sterilization can be controlled.
    Type: Application
    Filed: October 21, 2010
    Publication date: August 8, 2013
    Inventors: Takumi Tandou, Nobuyuki Negishi, Naoshi Itabashi
  • Publication number: 20130146763
    Abstract: An object of the present invention is to provide an image processing apparatus that quickly and precisely measures or evaluates a distortion in a field of view and a charged particle beam apparatus. To attain the object, an image processing apparatus or the like is proposed which acquires a first image of a first area of an imaging target and a second image of a second area that is located at a different position than the first area and partially overlaps with the first area and determines the distance between a measurement point in the second image and a second part of the second image that corresponds to a particular area for a plurality of sites in the overlapping area of the first image and the second image.
    Type: Application
    Filed: May 25, 2011
    Publication date: June 13, 2013
    Applicant: Hitachi High-Technologies Corporation
    Inventors: Hiroki Kawada, Osamu Inoue, Miyako Matsui, Takahiro Kawasaki, Naoshi Itabashi, Takashi Takahama, Katsumi Setoguchi, Osamu Komuro
  • Patent number: 8282767
    Abstract: A plasma processing apparatus including a chamber having an inner wall with a protective film thereon and a sample stage disposed in the chamber in which plasma is generated by supplying high-frequency wave energy to processing gas to conduct plasma processing for a sample on the sample stage using the plasma. The apparatus includes a control device which determines, based on monitor values of a wafer attracting current monitor (Ip) to monitor a current supplied from a wafer attracting power source, an impedance monitor (Zp) to monitor plasma impedance viewed from a plasma generating power source, and an impedance monitor (Zb) to monitor a plasma impedance viewed from a bias power supply, presence or absence of occurrence of an associated one of abnormal discharge in inner parts, deterioration in insulation of an insulating film of a wafer attracting electrode, and abnormal injection in a gas injection plate.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: October 9, 2012
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Naoshi Itabashi, Tsutomu Tetsuka, Seiichiro Kanno, Motohiko Yoshigai
  • Publication number: 20120241284
    Abstract: Sterilization and cleaning of an escalator hand rail are performed. A sterilization and cleaning device including a hand rail; a plasma source for irradiating the hand rails with ions or radicals or UV light; an enclosure for housing the plasma source; a power source for generating plasma; a fan for generating relatively negative pressure in the enclosure; filter units for removing removed bacteria, viruses, and organic matters such as hand marks; and filter plates located backward and forward of a moving direction of the hand rail in the enclosure along the hand rail is provided.
    Type: Application
    Filed: January 3, 2012
    Publication date: September 27, 2012
    Applicant: Hitachi, Ltd.
    Inventors: Hiroyuki KOBAYASHI, Takumi Tandou, Naoshi Itabashi
  • Publication number: 20120132368
    Abstract: To improve durability of an electric discharge part of a dielectric barrier discharge system, a plasma treatment apparatus is configured so that a plasma source of a corona discharge system is installed in the vicinity of a plasma source of the dielectric barrier discharge system, a plasma generated by corona discharge is used as an auxiliary plasma, and a discharge sustaining voltage of a main plasma generated by the dielectric barrier discharge is reduced.
    Type: Application
    Filed: November 9, 2011
    Publication date: May 31, 2012
    Inventors: Hiroyuki KOBAYASHI, Takumi TANDOU, Shoichi NAKASHIMA, Naoshi ITABASHI
  • Patent number: 8129283
    Abstract: The invention provides a plasma processing apparatus and a dry etching method for etching a multilayered film structure having steps with high accuracy. The plasma processing apparatus comprises a vacuum reactor 107, a lower electrode 113 placed within a processing chamber of the vacuum reactor and having a wafer 112 to be etched mounted on the upper surface thereof, bias supplying units 118 and 120 for supplying high frequency power for forming a bias potential to the lower electrode 113, a gas supply means 111 for feeding reactive gas into the processing chamber, an electric field supplying means 101 through 103 for supplying a magnetic field for generating plasma in the processing chamber, and a control unit 127 for controlling the distribution of ion energy in the plasma being incident on the wafer 112 via the high frequency power.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: March 6, 2012
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Masahito Mori, Naoyuki Kofuji, Naoshi Itabashi
  • Publication number: 20110297533
    Abstract: The invention provides a plasma processing apparatus and a dry etching method for etching a multilayered film structure having steps with high accuracy. The plasma processing apparatus comprises a vacuum reactor 107, a lower electrode 113 placed within a processing chamber of the vacuum reactor and having a wafer 112 to be etched mounted on the upper surface thereof, bias supplying units 118 and 120 for supplying high frequency power for forming a bias potential to the lower electrode 113, a gas supply means 111 for feeding reactive gas into the processing chamber, an electric field supplying means 101 through 103 for supplying a magnetic field for generating plasma in the processing chamber, and a control unit 127 for controlling the distribution of ion energy in the plasma being incident on the wafer 112 via the high frequency power.
    Type: Application
    Filed: August 18, 2011
    Publication date: December 8, 2011
    Applicant: Hitachi High-Technologies Corporation
    Inventors: Masahito MORI, Naoyuki KOFUJI, Naoshi ITABASHI
  • Publication number: 20110139370
    Abstract: A plasma processing apparatus including a chamber having an inner wall with a protective film thereon and a sample stage disposed in the chamber in which plasma is generated by supplying high-frequency wave energy to processing gas to conduct plasma processing for a sample on the sample stage using the plasma. The apparatus includes a control device which determines, based on monitor values of a wafer attracting current monitor (Ip) to monitor a current supplied from a wafer attracting power source, an impedance monitor (Zp) to monitor plasma impedance viewed from a plasma generating power source, and an impedance monitor (Zb) to monitor a plasma impedance viewed from a bias power supply, presence or absence of occurrence of an associated one of abnormal discharge in inner parts, deterioration in insulation of an insulating film of a wafer attracting electrode, and abnormal injection in a gas injection plate.
    Type: Application
    Filed: February 22, 2011
    Publication date: June 16, 2011
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Naoshi ITABASHI, Tsutomu Tetsuka, Seiichiro Kanno, Motohiko Yoshigai
  • Patent number: 7931776
    Abstract: A plasma processing apparatus including a chamber having an inner wall with a protective film thereon and a sample stage disposed in the chamber in which plasma is generated by supplying high-frequency wave energy to processing gas to conduct plasma processing for a sample on the sample stage using the plasma. The apparatus includes a control device which determines, based on monitor values of a wafer attracting current monitor (Ip) to monitor a current supplied from a wafer attracting power source, an impedance monitor (Zp) to monitor plasma impedance viewed from a plasma generating power source, and an impedance monitor (Zb) to monitor a plasma impedance viewed from a bias power supply, presence or absence of occurrence of an associated one of abnormal discharge in inner parts, deterioration in insulation of an insulating film of a wafer attracting electrode, and abnormal injection in a gas injection plate.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: April 26, 2011
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Naoshi Itabashi, Tsutomu Tetsuka, Seiichiro Kanno, Motohiko Yoshigai
  • Publication number: 20110081655
    Abstract: An object of the present invention relates to distinguishing, from a fluorophore of an unreacted substrate, a single fluorophore attached to a nucleotide that is incorporated into a probe by a nucleic acid synthesis. The present invention relates to a nucleic acid analyzing device that analyzes a nucleic acid in sample by fluorescence, wherein a localized surface plasmon is generated by illumination, and a probe for analyzing the nucleic acid in the sample is on the site where the surface plasmon is generated. According to the present invention, since it is possible to efficiently produce fluorescence intensifying effects due to the surface plasmon and to immobilize the probe to a region within the reach of the fluorescence intensifying effects, it becomes possible to measure a nucleic acid synthesis without removing unreacted nucleotide to which fluorophores are attached.
    Type: Application
    Filed: May 13, 2009
    Publication date: April 7, 2011
    Inventors: Masatoshi Narahara, Toshiro Saito, Naoshi Itabashi, Jiro Yamamoto, Hiroyuki Uchiyama