Patents by Inventor Naoyuki Iwasa

Naoyuki Iwasa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11319617
    Abstract: The present invention provides a method for producing a ring-rolled material of an Fe—Ni based superalloy which inhibits AGG, has a fine-grained structure having an ASTM grain size number of at least 8, and has high circularity. A method for producing a ring-rolled material of an Fe—Ni based superalloy having a composition of an Alloy 718 comprises: heating a ring-shaped material for ring rolling having the composition, in a temperature range of 900° C. to 980° C., and performing finishing ring rolling, as a finishing ring rolling step; heating the ring-rolled material that has been subjected to the finishing ring rolling, in a temperature range of 980 to 1010° C.; and correcting ellipticalness while expanding a diameter of the ring-rolled material by using a ring expander.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: May 3, 2022
    Assignee: HITACHI METALS, LTD.
    Inventors: Chuya Aoki, Tsuyoshi Fukui, Daigo Ohtoyo, Etsuo Fujita, Naoyuki Iwasa, Taku Hirosawa
  • Publication number: 20220042144
    Abstract: The present invention provides a method for producing a ring-rolled material of an Fe—Ni based superalloy which inhibits AGG, has a fine-grained structure having an ASTM grain size number of at least 8, and has high circularity. A method for producing a ring-rolled material of an Fe—Ni based superalloy having a composition of an Alloy 718 comprises: heating a ring-shaped material for ring rolling having the composition, in a temperature range of 900° C. to 980° C., and performing finishing ring rolling, as a finishing ring rolling step; heating the ring-rolled material that has been subjected to the finishing ring rolling, in a temperature range of 980 to 1010° C.; and correcting ellipticalness while expanding a diameter of the ring-rolled material by using a ring expander.
    Type: Application
    Filed: September 19, 2019
    Publication date: February 10, 2022
    Inventors: Chuya AOKI, Tsuyoshi FUKUI, Daigo OHTOYO, Etsuo FUJITA, Naoyuki IWASA, Taku HIROSAWA
  • Publication number: 20220032359
    Abstract: A method for producing a ring-rolled material of an Fe—Ni based superalloy, which has a high circularity, can inhibit AGG, and can inhibit grain growth. A method for producing a ring-rolled material of an Fe—Ni based superalloy having a composition of an Alloy 718 comprises: a finishing ring rolling step of heating a ring-shaped material for ring rolling having the composition, in a temperature range of 900° C. to 980° C., and performing finishing ring rolling; and a circularity correcting step of correcting an ellipticalness of the ring-rolled material that has been rolled in the finishing ring rolling step, while expanding a diameter of the ring-rolled material by using a ring expander including a pipe-expanding cone and a pipe-expanding die, wherein the ring-rolled material that has been rolled in the finishing ring rolling step is subjected to circularity correction without being reheated or after having been heated to up to 960° C.
    Type: Application
    Filed: September 19, 2019
    Publication date: February 3, 2022
    Inventors: Chuya AOKI, Tsuyoshi FUKUI, Daigo OHTOYO, Etsuo FUJITA, Naoyuki IWASA, Taku HIROSAWA
  • Patent number: 10286443
    Abstract: A ring rolling mill includes: a rotary drive main roll and a mandrel roll, which are for reducing the thickness of and rolling a ring-shaped material from the radial direction; a pair of rotary drive axial rolls for reducing the thickness of and rolling the ring-shaped material from the axial direction; a measuring roll for measuring the diameter of the ring-shaped material during rolling; and a speed control unit for controlling the speed of the axial rolls. The speed control unit is configured to repeat measuring the diameter at predetermined time intervals ?t and comparing a measurement value Lt of the diameter at time t and a measurement value Lt+?t of the diameter at time t+?t, and the speed control unit is further configured to maintain the speed of the axial rolls unchanged upon the result of the comparison being Lt+?t<Lt.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: May 14, 2019
    Assignee: HITACHI METALS, LTD.
    Inventors: Naoyuki Iwasa, Tsuyoshi Fukui
  • Patent number: 10094238
    Abstract: The present invention provides a high quality material for ring rolling. The material includes radially outer and inner peripheral surfaces. In the material, a center of gravity on a half section is located so as to be closer to the outer peripheral surface in contact with a main roll than a center of the half section in a thickness direction, a shape of the half section includes a height reducing portion having a height from a center line dividing the half section into halves in a height direction, this height is gradually reduced toward the inner peripheral surface in contact with a mandrel roll, and the shape is formed in a substantially linear symmetry such that the center line is a symmetric axis. A height of the inner peripheral surface is from 20% to 50% of a maximum height of the material.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: October 9, 2018
    Assignee: Hitachi Metals, Ltd.
    Inventors: Tetsuya Yagami, Toshiya Teramae, Etsuo Fujita, Shinya Nagao, Remi Mukouse, Naoyuki Iwasa, Tsuyoshi Fukui, Chuya Aoki
  • Patent number: 9719369
    Abstract: A manufacturing method provides a high-quality material for ring rolling. The manufacturing method of the material for ring rolling includes a step of heating a disk-shaped material for hot forging to a hot working temperature, a step of arranging the material for hot forging onto a lower die having a convex portion with a truncated conical shape, a step of forming a thin portion by pressing a center portion of the material for hot forging by using an upper die having a convex portion with a truncated conical shape, and a step of manufacturing a material for ring rolling by removing the thin portion wherein a center of gravity on a half section of the material for ring rolling is located so as to be closer to an outer peripheral surface of the half section than a center of the half section in a thickness direction of the half section.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: August 1, 2017
    Assignee: HITACHI METALS, LTD.
    Inventors: Tetsuya Yagami, Toshiya Teramae, Etsuo Fujita, Shinya Nagao, Remi Mukouse, Naoyuki Iwasa, Tsuyoshi Fukui, Chuya Aoki
  • Publication number: 20160288196
    Abstract: A ring rolling mill includes: a rotary drive main roll and a mandrel roll, which are for reducing the thickness of and rolling a ring-shaped material from the radial direction; a pair of rotary drive axial rolls for reducing the thickness of and rolling the ring-shaped material from the axial direction; a measuring roll for measuring the diameter of the ring-shaped material during rolling; and a speed control unit for controlling the speed of the axial rolls. The speed control unit is configured to repeat measuring the diameter at predetermined time intervals ?t and comparing a measurement value Lt of the diameter at time t and a measurement value Lt+?t of the diameter at time t+?t, and the speed control unit is further configured to maintain the speed of the axial rolls unchanged upon the result of the comparison being Lt+?t<Lt.
    Type: Application
    Filed: March 29, 2016
    Publication date: October 6, 2016
    Inventors: Naoyuki IWASA, Tsuyoshi FUKUI
  • Publication number: 20160281530
    Abstract: The present invention provides a high quality material for ring rolling. The material includes radially outer and inner peripheral surfaces. In the material, a center of gravity on a half section is located so as to be closer to the outer peripheral surface in contact with a main roll than a center of the half section in a thickness direction, a shape of the half section includes a height reducing portion having a height from a center line dividing the half section into halves in a height direction, this height is gradually reduced toward the inner peripheral surface in contact with a mandrel roll, and the shape is formed in a substantially linear symmetry such that the center line is a symmetric axis. A height of the inner peripheral surface is from 20% to 50% of a maximum height of the material.
    Type: Application
    Filed: March 18, 2014
    Publication date: September 29, 2016
    Inventors: Tetsuya Yagami, Toshiya Teramae, Etsuo Fujita, Shinya Nagao, Remi Mukouse, Naoyuki Iwasa, Tsuyoshi Fukui, Chuya Aoki
  • Publication number: 20160271681
    Abstract: A manufacturing method provides a high-quality material for ring rolling. The manufacturing method of the material for ring rolling includes a step of heating a disk-shaped material for hot forging to a hot working temperature, a step of arranging the material for hot forging onto a lower die having a convex portion with a truncated conical shape, a step of forming a thin portion by pressing a center portion of the material for hot forging by using an upper die having a convex portion with a truncated conical shape, and a step of manufacturing a material for ring rolling by removing the thin portion wherein a center of gravity on a half section of the material for ring rolling is located so as to be closer to an outer peripheral surface of the half section than a center of the half section in a thickness direction of the half section.
    Type: Application
    Filed: March 18, 2014
    Publication date: September 22, 2016
    Inventors: Tetsuya Yagami, Toshiya Teramae, Etsuo Fujita, Shinya Nagao, Remi Mukouse, Naoyuki Iwasa, Tsuyoshi Fukui, Chuya Aoki