Patents by Inventor Naoyuki Sanada

Naoyuki Sanada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11870300
    Abstract: A pressed powder material of the embodiments is a pressed powder material including: a plurality of flaky magnetic metal particles, each flaky magnetic metal particle having a flat surface and a magnetic metal phase containing at least one first element selected from the group consisting of Fe, Co, and Ni, the flaky magnetic metal particles having an average thickness of from 10 nm to 100 ?m and an average value of the ratio of the average length in the flat surface to the thickness of from 5 to 10,000; and an intercalated phase existing between the flaky magnetic metal particles and containing at least one second element selected from the group consisting of oxygen (O), carbon (C), nitrogen (N), and fluorine (F), in which the pressed powder material includes a plane, and in which the pressed powder material includes, in a predetermined cross-section perpendicular to the flat surfaces, a void site at the boundary part between the flat surface of a flaky magnetic metal particle and the intercalated phase in co
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: January 9, 2024
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Naoyuki Sanada, Tomohiro Suetsuna, Hiroaki Kinouchi, Yasuyuki Hotta
  • Publication number: 20230313349
    Abstract: Flaky magnetic metal particles of embodiments each have a flat surface and a magnetic metal phase containing iron (Fe), cobalt (Co), and silicon (Si). An amount of Co is from 0.001 at% to 80 at% with respect to the total amount of Fe and Co. An amount of Si is from 0.001 at% to 30 at% with respect to the total amount of the magnetic metal phase. The flaky magnetic metal particles have an average thickness of from 10 nm to 100 µm. An average value of the ratio of the average length in the flat surface with respect to a thickness in each of the flaky magnetic metal particles is from 5 to 10,000. The flaky magnetic metal particles have the difference in coercivity on the basis of direction within the flat surface.
    Type: Application
    Filed: May 10, 2023
    Publication date: October 5, 2023
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tomohiro SUETSUNA, Hiroaki KINOUCHI, Takahiro KAWAMOTO, Naoyuki SANADA
  • Publication number: 20230290548
    Abstract: A magnetic material according to an embodiment includes at least one first element X selected from the group consisting of Fe, Co and Ni; a matrix phase; and a particle including C and at least one second element Y selected from Ta, W, Nb and Mo.
    Type: Application
    Filed: March 1, 2023
    Publication date: September 14, 2023
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tomohiro SUETSUNA, Naoyuki SANADA, Hiroaki KINOUCHI
  • Patent number: 11692250
    Abstract: Flaky magnetic metal particles of embodiments each have a flat surface and a magnetic metal phase containing iron (Fe), cobalt (Co), and silicon (Si). An amount of Co is from 0.001 at % to 80 at % with respect to the total amount of Fe and Co. An amount of Si is from 0.001 at % to 30 at % with respect to the total amount of the magnetic metal phase. The flaky magnetic metal particles have an average thickness of from 10 nm to 100 ?m. An average value of the ratio of the average length in the flat surface with respect to a thickness in each of the flaky magnetic metal particles is from 5 to 10,000. The flaky magnetic metal particles have the difference in coercivity on the basis of direction within the flat surface.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: July 4, 2023
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomohiro Suetsuna, Hiroaki Kinouchi, Takahiro Kawamoto, Naoyuki Sanada
  • Patent number: 11588359
    Abstract: A rotating electric machine according to embodiments is a rotating electric machine including a rotor including a first core and being capable of rotating around a rotating shaft; and a stator disposed to face the rotor in the axial direction of the rotating shaft, the first core including a first pressed powder material having a plurality of first flaky magnetic metal particles and a first intercalated phase, the first flaky magnetic metal particles having an average thickness of from 10 nm to 100 ?m, each first flaky magnetic metal particle having a first flat surface and a first magnetic metal phase including at least one first element selected from the group consisting of Fe, Co, and Ni, the average value of the ratio of the average length in the first flat surface with respect to the average thickness being from 5 to 10,000, the first intercalated phase existing between the first flaky magnetic metal particles and including at least one second element selected from the group consisting of oxygen (O), car
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: February 21, 2023
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hiroaki Kinouchi, Tomohiro Suetsuna, Naoyuki Sanada, Masaya Hagiwara
  • Publication number: 20220298613
    Abstract: A pressed powder material according to embodiments is a pressed powder material including first magnetic metal particles having a first magnetic metal phase containing Fe and Co; and second magnetic metal particles having a second magnetic metal phase containing Fe, in which when the amounts of Co with respect to the total amounts of Fe and Co of the first and second magnetic metal particles are designated as Co1 and Co2, respectively, the ratio of Co2 to Co1 (Co2/Co1) is from 0 to 0.5, the average value of the ratio of the major axis to the minor axis is 2 or greater for the first magnetic metal particles and 1 or greater for the second magnetic metal particles, the second magnetic metal particles are present between the particles of the first magnetic metal particles, and the average value of the major axis of the second magnetic metal particles is equal to or longer than the average value of the major axis of the first magnetic metal particles.
    Type: Application
    Filed: September 3, 2021
    Publication date: September 22, 2022
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masaya Hagiwara, Tomohiro Suetsuna, Naoyuki Sanada, Hiroaki Kinouchi
  • Patent number: 11289249
    Abstract: The permanent magnet includes: a main phase expressed by a composition formula: RMZNX and having at least one crystal structure selected from the group consisting of a Th2Ni17 crystal structure, a Th2Zn17 crystal structure, and a TbCu7 crystal structure; and a sub phase having a phosphorus compound phase containing a phosphorus compound excluding a phosphoric acid compound.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: March 29, 2022
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Naoyuki Sanada, Shinya Sakurada
  • Publication number: 20220085669
    Abstract: A rotating electric machine according to embodiments is a rotating electric machine including a rotor including a first core and being capable of rotating around a rotating shaft; and a stator disposed to face the rotor in the axial direction of the rotating shaft, the first core including a first pressed powder material having a plurality of first flaky magnetic metal particles and a first intercalated phase, the first flaky magnetic metal particles having an average thickness of from 10 nm to 100 ?m, each first flaky magnetic metal particle having a first flat surface and a first magnetic metal phase including at least one first element elected from the group consisting of Fe, Co, and Ni, the average value of the ratio of the average length in the first flat surface with respect to the average thickness being from 5 to 10,000, the first intercalated phase existing between the first flaky magnetic metal particles and including at least one second element selected from the group consisting of oxygen (O), carb
    Type: Application
    Filed: March 9, 2021
    Publication date: March 17, 2022
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hiroaki KINOUCHI, Tomohiro SUETSUNA, Naoyuki SANADA, Masaya HAGIWARA
  • Publication number: 20220072606
    Abstract: A pressed powder material of embodiments is a pressed powder material including a plurality of flaky magnetic metal particles and an intercalated phase, each of the flaky magnetic metal particles having a flat surface and a magnetic metal phase containing at least one first element selected from the group consisting of Fe, Co, and Ni, the flaky magnetic metal particles having an average thickness of from 10 nm to 100 ?m and an average value of the ratio of the average length in the flat surface with respect to the thickness of from 5 to 10,000, the intercalated phase existing between the flaky magnetic metal particles and containing at least one second element selected from the group consisting of oxygen (O), carbon (C), nitrogen (N), and fluorine (F), wherein in the pressed powder material, the flat surface is oriented in parallel to a plane of the pressed powder material and has the difference in coercivity on the basis of direction within the plane, the intercalated phase includes an oxide and a resin, the
    Type: Application
    Filed: March 5, 2021
    Publication date: March 10, 2022
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tomohiro SUETSUNA, Hiroaki KINOUCHI, Naoyuki SANADA, Masaya HAGIWARA
  • Publication number: 20210305851
    Abstract: A pressed powder material of the embodiments is a pressed powder material including: a plurality of flaky magnetic metal particles, each flaky magnetic metal particle having a flat surface and a magnetic metal phase containing at least one first element selected from the group consisting of Fe, Co, and Ni, the flaky magnetic metal particles having an average thickness of from 10 nm to 100 ?m and an average value of the ratio of the average length in the flat surface to the thickness of from 5 to 10,000; and an intercalated phase existing between the flaky magnetic metal particles and containing at least one second element selected from the group consisting of oxygen (O), carbon (C), nitrogen (N), and fluorine (F), in which the pressed powder material includes a plane, and in which the pressed powder material includes, in a predetermined cross-section perpendicular to the flat surfaces, a void site at the boundary part between the flat surface of a flaky magnetic metal particle and the intercalated phase in co
    Type: Application
    Filed: August 26, 2020
    Publication date: September 30, 2021
    Inventors: Naoyuki Sanada, Tomohiro Suetsuna, Hiroaki Kinouchi, Yasuyuki Hotta
  • Patent number: 11081264
    Abstract: A high-performance permanent magnet is provided. A permanent magnet expressed by a composition formula: RpFeqMrCutCo100-p-q-r-t-. The magnet comprises a metal structure including a cell phase having a Th2Zn17 crystal phase, and a Cu-rich phase provided to divide the cell phase and having a Cu concentration higher than that of the Th2Zn17 crystal phase. An Fe concentration of the Th2Zn17 crystal phase is not less than 30 atomic % nor more than 45 atomic %. An average length of the Cu-rich phase is not less than 30 nm nor more than 250 nm.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: August 3, 2021
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yosuke Horiuchi, Shinya Sakurada, Naoyuki Sanada
  • Publication number: 20210082608
    Abstract: A magnetic material of the embodiments is a magnetic material including: a plurality of flaky magnetic metal particles, each flaky magnetic metal particle having a flat surface and amagneticmetalphase containing at least one first element selected from the group consisting of Fe, Co, and Ni, the flaky magnetic metal particles having an average thickness of from 10 nm to 100 ?m and having an average value of the ratio of the average length in the flat surface to the thickness of from 5 to 10,000; and an intercalated phase existing between the flaky magnetic metal particles and containing at least one second element selected from the group consisting of oxygen (O), carbon (C), nitrogen (N), and fluorine (F), in which the magnetic material includes the intercalated phase at a volume ratio of from 4% to 17% and includes voids at a volume ratio of 30% or less, and an average angle of orientation between the flat surface and a plane of the magnetic material is 10° or less.
    Type: Application
    Filed: March 3, 2020
    Publication date: March 18, 2021
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Naoyuki SANADA, Tomohiro SUETSUNA, Hiroaki KINOUCHI
  • Patent number: 10943716
    Abstract: A high-performance permanent magnet is provided. A permanent magnet expressed by a composition formula: (R1-xAx)pFeqMrCutCo100-p-r-t. The magnet comprises a metal structure including a plurality of crystal grains which constitutes a main phase having a Th2Zn17 crystal phase, An Fe concentration of each of the crystal grains is 28 atomic % or more. A concentration difference of the element A among the crystal grains is not less than 0.2 atomic % nor more than 3.0 atomic %.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: March 9, 2021
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yosuke Horiuchi, Shinya Sakurada, Naoyuki Sanada
  • Patent number: 10923255
    Abstract: A magnetic material is expressed by a composition formula: (R1-xZx)aMbTc, and includes a main phase having a ThMn12 crystal structure. In the ThMn12 crystal structure, when an amount of the element Z occupying 2a site is Z2a atomic percent, an amount of the element Z occupying 8i site is Z8i atomic percent, an amount of the element Z occupying 8j site is Z8j atomic percent, and an amount of the element Z occupying 8f site is Z8f atomic percent, Z2a, Z8i, Z8j, and Z8f satisfy (Z8i+Z8j+Z8f)/(Z2a+Z8i+Z8j+Z8f)<0.1.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: February 16, 2021
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Naoyuki Sanada, Masaya Hagiwara, Shinya Sakurada
  • Patent number: 10892091
    Abstract: A method of manufacturing a permanent magnet comprises a solution heat treatment. The solution heat treatment includes: performing a heat treatment at a temperature TST; placing a cooling member including a first layer and a second layer on the first layer between the heater and the treatment object so that the first layer faces the treatment object; and transferring the treatment object together with the cooling member to the outside of a heating chamber, and cooling the treatment object until a temperature of the treatment object becomes a temperature lower than a temperature TST?200° C. In the step of cooling the treatment object, a cooling rate until the temperature of the treatment object becomes the temperature TST?200° C. is 5° C./s or more.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: January 12, 2021
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Naoyuki Sanada, Shinya Sakurada, Yosuke Horiuchi, Masaya Hagiwara, Masaki Endo, Takahiro Terada, Hideo Chikaoka
  • Publication number: 20200303106
    Abstract: A plurality of flaky magnetic metal particles of embodiments is a plurality of flaky magnetic metal particles having an average thickness of from 10 nm to 100 ?m, each of the flaky magnetic metal particles having a flat surface; a magnetic metal phase containing at least one first element selected from the group consisting of Fe, Co, and Ni; and the difference in coercivity on the basis of direction within the flat surface, the average value of the ratio of the average length within the flat surface with respect to the thickness being from 5 to 10,000, and the flaky magnetic metal particles including a flaky magnetic metal particle having either a crack in the direction of the thickness of the flaky magnetic metal particle, the crack having a depth equivalent to 10% or more of the thickness of the flaky magnetic metal particle and a width shorter than the depth, or a crack in a direction parallel to the flat surface, the crack having a length equivalent to 10% or more of the thickness of the flaky magnetic me
    Type: Application
    Filed: August 9, 2019
    Publication date: September 24, 2020
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tomohiro SUETSUNA, Hiroaki KINOUCHI, Naoyuki SANADA, Takahiro KAWAMOTO
  • Patent number: 10770208
    Abstract: A high performance permanent magnet is provided. The permanent magnet includes a composition represented by a composition formula: RpFeqMrCutCo100-p-q-r-t, and a metallic structure including cell phases having a Th2Zn17 crystal phase and Cu-rich phases having higher Cu concentration than the cell phases. An average diameter of the cell phases is 220 nm or less, and in a numeric value range from a minimum diameter to a maximum diameter of the cell phases, a ratio of a number of cell phases having a diameter in a numeric value range of less than upper 20% from the maximum diameter is 20% or less of all the cell phases.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: September 8, 2020
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yosuke Horiuchi, Shinya Sakurada, Keiko Okamoto, Masaya Hagiwara, Tsuyoshi Kobayashi, Masaki Endo, Tadahiko Kobayashi, Naoyuki Sanada
  • Patent number: 10650947
    Abstract: The invention provides a high-performance permanent magnet. The permanent magnet has a composition that is expressed by a composition formula RpFeqMrCutCo100-p-q-r-t, where R is at least one element selected from a rare earth element, M is at least one element selected from the group consisting of Zr, Ti, and Hf, p is a number satisfying 10.8?p?12.5 atomic percent, q is a number satisfying 25?q?40 atomic percent, r is a number satisfying 0.88?r?4.5 atomic percent, and t is a number satisfying 3.5?t?13.5 atomic percent. The permanent magnet also has a metallic structure that includes a main phase having a Th2Zn17 crystal phase, and a Cu-M rich phase having a higher Cu concentration and a higher M concentration than the main phase.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: May 12, 2020
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yosuke Horiuchi, Shinya Sakurada, Keiko Okamoto, Masaya Hagiwara, Tsuyoshi Kobayashi, Masaki Endo, Tadahiko Kobayashi, Naoyuki Sanada
  • Publication number: 20200075203
    Abstract: A magnet material is expressed by a composition formula 1: (R1-xYx)aMbTc, and includes a main phase having a ThMn12 crystal phase. A total amount of at least one sub-phase selected from the group consisting of a Th2Zn17 crystal phase, a Th2Ni17 crystal phase, a TbCu7 crystal phase, and an Nd3(Fe, Ti)29 crystal phase is 20 volume % or less. A total amount of at least one hetero-phase selected from the group consisting of an ?-Fe phase and an ?-(Fe, Co) phase is 5 volume % or less. An average crystal grain size of the main phase is 4 ?m or more.
    Type: Application
    Filed: February 25, 2019
    Publication date: March 5, 2020
    Inventors: Masaya Hagiwara, Shinya Sakurada, Naoyuki Sanada
  • Publication number: 20200043639
    Abstract: Flaky magnetic metal particles of embodiments each have a flat surface and a magnetic metal phase containing iron (Fe), cobalt (Co), and silicon (Si). An amount of Co is from 0.001 at % to 80 at % with respect to the total amount of Fe and Co. An amount of Si is from 0.001 at % to 30 at % with respect to the total amount of the magnetic metal phase. The flaky magnetic metal particles have an average thickness of from 10 nm to 100 ?m. An average value of the ratio of the average length in the flat surface with respect to a thickness in each of the flaky magnetic metal particles is from 5 to 10,000. The flaky magnetic metal particles have the difference in coercivity on the basis of direction within the flat surface.
    Type: Application
    Filed: July 30, 2019
    Publication date: February 6, 2020
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tomohiro SUETSUNA, Hiroaki KINOUCHI, Takahiro KAWAMOTO, Naoyuki SANADA