Patents by Inventor Naresh C. Bhavaraju

Naresh C. Bhavaraju has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200316296
    Abstract: Systems and methods are disclosed that provide smart alerts to users, e.g., alerts to users about diabetic states that are only provided when it makes sense to do so, e.g., when the system can predict or estimate that the user is not already cognitively aware of their current condition, e.g., particularly where the current condition is a diabetic state warranting attention. In this way, the alert or alarm is personalized and made particularly effective for that user. Such systems and methods still alert the user when action is necessary, e.g., a bolus or temporary basal rate change, or provide a response to a missed bolus or a need for correction, but do not alert when action is unnecessary, e.g., if the user is already estimated or predicted to be cognitively aware of the diabetic state warranting attention, or if corrective action was already taken.
    Type: Application
    Filed: June 17, 2020
    Publication date: October 8, 2020
    Inventors: Anna Leigh Davis, Scott M. Belliveau, Naresh C. Bhavaraju, Leif N. Bowman, Rita M. Castillo, Alexandra Elena Constantin, Rian Draeger, Laura J. Dunn, Gary Brian Gable, Arturo Garcia, Thomas Hall, Hari Hampapuram, Christopher Robert Hannemann, Anna Claire Harley-Trochimczyk, Nathaniel David Heintzman, Andrea Jean Jackson, Lauren Hruby Jepson, Apurv Ullas Kamath, Katherine Yerre Koehler, Aditya Sagar Mandapaka, Samuel Jere Marsh, Gary A. Morris, Subrai Girish Pai, Andrew Attila Pal, Nicholas Polytaridis, Philip Thomas Pupa, Eli Reihman, Ashley Anne Rindfleisch, Sofie Wells Schunk, Peter C. Simpson, Daniel Smith, Stephen J. Vanslyke, Matthew T. Vogel, Tomas C. Walker, Benjamin Elrod West, Atiim Joseph Wiley
  • Publication number: 20200305804
    Abstract: Systems and methods for providing sensitive and specific alarms indicative of glycemic condition are provided herein. In an embodiment, a method of processing sensor data by a continuous analyte sensor includes: evaluating sensor data using a first function to determine whether a real time glucose value meets a first threshold; evaluating sensor data using a second function to determine whether a predicted glucose value meets a second threshold; activating a hypoglycemic indicator if either the first threshold is met or if the second threshold is predicted to be met; and providing an output based on the activated hypoglycemic indicator.
    Type: Application
    Filed: May 27, 2020
    Publication date: October 1, 2020
    Inventors: Hari Hampapuram, Anna Leigh Davis, Naresh C. Bhavaraju, Apurv Ullas Kamath, Claudio Cobelli, Giovanni Sparacino, Andrea Facchinetti, Chiara Zecchin
  • Publication number: 20200281541
    Abstract: Systems and methods for providing sensitive and specific alarms indicative of glycemic condition are provided herein. In an embodiment, a method of processing sensor data by a continuous analyte sensor includes: evaluating sensor data using a first function to determine whether a real time glucose value meets a first threshold; evaluating sensor data using a second function to determine whether a predicted glucose value meets a second threshold; activating a hypoglycemic indicator if either the first threshold is met or if the second threshold is predicted to be met; and providing an output based on the activated hypoglycemic indicator.
    Type: Application
    Filed: May 27, 2020
    Publication date: September 10, 2020
    Inventors: Hari Hampapuram, Anna Leigh Davis, Naresh C. Bhavaraju, Apurv Ullas Kamath, Claudio Cobelli, Giovanni Sparacino, Andrea Facchinetti, Chiara Zecchin
  • Publication number: 20200281511
    Abstract: Disclosed herein are devices, systems, and methods for a continuous analyte sensor, such as a continuous glucose sensor. In certain embodiments disclosed herein, various in vivo properties of the sensor's surroundings can be measured. In some embodiments, the measured properties can be used to identify a physiological response or condition in the body. This information can then be used by a patient, doctor, or system to respond appropriately to the identified condition.
    Type: Application
    Filed: May 22, 2020
    Publication date: September 10, 2020
    Inventors: Naresh C. Bhavaraju, Sebastian Bohm, Robert J. Boock, Daiting Rong, Peter C. Simpson
  • Publication number: 20200275870
    Abstract: Systems and methods described provide dynamic and intelligent ways to change the required level of user interaction during use of a monitoring device. The systems and methods generally relate to real time switching between a first or initial mode of user interaction and a second or new mode of user interaction. In some cases, the switching will be automatic and transparent to the user, and in other cases user notification may occur. The mode switching generally affects the user's interaction with the device, and not just internal processing. The mode switching may relate to calibration modes, data transmission modes, control modes, or the like.
    Type: Application
    Filed: May 19, 2020
    Publication date: September 3, 2020
    Inventors: Naresh C. Bhavaraju, Michael A. Bloom, Leif N. Bowman, Alexandra Lynn Carlton, Katherine Yerre Koehler, Hari Hampapuram, Jonathan Hughes, Lauren Hruby Jepson, Apurv Ullas Kamath, Anna Leigh Davis, Peter C. Simpson, Stephen J. Vanslyke
  • Publication number: 20200272319
    Abstract: A system, a method, and a computer program product for providing wearable continuous blood glucose monitoring. In some embodiments, there is provided a method that includes receiving, at a smartwatch, an alert representative of a glucose state of a host-patient coupled to a glucose sensor; detecting, at the smartwatch, a predetermined action indicative of a request to generate a glance view providing an indication of the glucose state of the host-patient; and presenting, at the smartwatch and in response to the detecting, the glance view providing the indication of the glucose state of the host-patient.
    Type: Application
    Filed: May 13, 2020
    Publication date: August 27, 2020
    Inventors: Naresh C. Bhavaraju, Eric Cohen, Arturo Garcia, Katherine Yerre Koehler, Michael Robert Mensinger, Eli Reihman, Brian Christopher Smith, Peter Hedlund, Esteban Cabrera, JR.
  • Patent number: 10737025
    Abstract: Systems and methods are disclosed that provide smart alerts to users, e.g., alerts to users about diabetic states that are only provided when it makes sense to do so, e.g., when the system can predict or estimate that the user is not already cognitively aware of their current condition, e.g., particularly where the current condition is a diabetic state warranting attention. In this way, the alert or alarm is personalized and made particularly effective for that user. Such systems and methods still alert the user when action is necessary, e.g., a bolus or temporary basal rate change, or provide a response to a missed bolus or a need for correction, but do not alert when action is unnecessary, e.g., if the user is already estimated or predicted to be cognitively aware of the diabetic state warranting attention, or if corrective action was already taken.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: August 11, 2020
    Assignee: DexCom, Inc.
    Inventors: Anna Leigh Davis, Scott M. Belliveau, Naresh C. Bhavaraju, Leif N. Bowman, Rita M. Castillo, Alexandra Elena Constantin, Rian Draeger, Laura J. Dunn, Gary Brian Gable, Arturo Garcia, Thomas Hall, Hari Hampapuram, Christopher Robert Hannemann, Anna Claire Harley-Trochimczyk, Nathaniel David Heintzman, Andrea J. Jackson, Lauren Hruby Jepson, Apurv Ullas Kamath, Katherine Yerre Koehler, Aditya Sagar Mandapaka, Samuel Jere Marsh, Gary A. Morris, Subrai Girish Pai, Andrew Attila Pal, Nicholas Polytaridis, Philip Thomas Pupa, Eli Reihman, Ashley Anne Rindfleisch, Sofie Wells Schunk, Peter C. Simpson, Daniel Smith, Stephen J. Vanslyke, Matthew T. Vogel, Tomas C. Walker, Benjamin Elrod West, Atiim Joseph Wiley
  • Publication number: 20200245914
    Abstract: Systems and methods described provide dynamic and intelligent ways to change the required level of user interaction during use of a monitoring device. The systems and methods generally relate to real time switching between a first or initial mode of user interaction and a second or new mode of user interaction. In some cases, the switching will be automatic and transparent to the user, and in other cases user notification may occur. The mode switching generally affects the user's interaction with the device, and not just internal processing. The mode switching may relate to calibration modes, data transmission modes, control modes, or the like.
    Type: Application
    Filed: April 17, 2020
    Publication date: August 6, 2020
    Inventors: Naresh C. Bhavaraju, Michael A. Bloom, Leif N. Bowman, Alexandra Lynn Carlton, Katherine Yerre Koehler, Hari Hampapuram, Lauren Hruby Jepson, Jonathan Hughes, Apurv Ullas Kamath, Anna Leigh Davis, Peter C. Simpson, Stephen J. Vanslyke
  • Patent number: 10729364
    Abstract: Systems and methods are disclosed which provide for a “factory-calibrated” sensor. In doing so, the systems and methods include predictive prospective modeling of sensor behavior, and also include predictive modeling of physiology. With these two correction factors, a consistent determination of sensitivity can be achieved, thus achieving factory calibration.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: August 4, 2020
    Assignee: DexCom, Inc.
    Inventors: Rui Ma, Naresh C. Bhavaraju, Thomas Stuart Hamilton, Jonathan Hughes, Jeff Jackson, David I-Chun Lee, Peter C. Simpson, Stephen J. Vanslyke
  • Patent number: 10722161
    Abstract: Disclosed herein are devices, systems, and methods for a continuous analyte sensor, such as a continuous glucose sensor. In certain embodiments disclosed herein, various in vivo properties of the sensor's surroundings can be measured. In some embodiments, the measured properties can be used to identify a physiological response or condition in the body. This information can then be used by a patient, doctor, or system to respond appropriately to the identified condition.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 28, 2020
    Assignee: DexCom, Inc.
    Inventors: Naresh C. Bhavaraju, Sebastian Bohm, Robert J. Boock, Daiting Rong, Peter C. Simpson
  • Patent number: 10725652
    Abstract: A system, a method, and a computer program product for providing wearable continuous blood glucose monitoring. In some embodiments, there is provided a method that includes receiving, at a smartwatch, an alert representative of a glucose state of a host-patient coupled to a glucose sensor; detecting, at the smartwatch, a predetermined action indicative of a request to generate a glance view providing an indication of the glucose state of the host-patient; and presenting, at the smartwatch and in response to the detecting, the glance view providing the indication of the glucose state of the host-patient.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: July 28, 2020
    Assignee: DexCom, Inc.
    Inventors: Naresh C. Bhavaraju, Eric Cohen, Arturo Garcia, Katherine Yerre Koehler, Michael Robert Mensinger, Eli Reihman, Brian Christopher Smith, Peter Hedlund, Esteban Cabrera, Jr.
  • Patent number: 10702215
    Abstract: Systems and methods for providing sensitive and specific alarms indicative of glycemic condition are provided herein. In an embodiment, a method of processing sensor data by a continuous analyte sensor includes: evaluating sensor data using a first function to determine whether a real time glucose value meets a first threshold; evaluating sensor data using a second function to determine whether a predicted glucose value meets a second threshold; activating a hypoglycemic indicator if either the first threshold is met or if the second threshold is predicted to be met; and providing an output based on the activated hypoglycemic indicator.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: July 7, 2020
    Assignee: DexCom, Inc.
    Inventors: Hari Hampapuram, Anna Leigh Davis, Naresh C. Bhavaraju, Apurv Ullas Kamath, Claudio Cobelli, Giovanni Sparacino, Andrea Facchinetti, Chiara Zecchin
  • Publication number: 20200205704
    Abstract: Systems and method are described for determining if a decision support recommendation is to be presented to a user for treatment of a diabetic state, including receiving a plurality of input data items impacting a diabetic state of a user of continuous glucose monitor, the input data items serving as input data to a process for determining a decision support recommendation; assigning a reliability level to each of the input data items; calculating a reliability metric based on the reliability levels assigned to each of the input data items; determining a decision support recommendation based on the process and the input data and presenting the decision support recommendation to the user on a user interface only if the reliability metric exceeds a threshold.
    Type: Application
    Filed: December 20, 2019
    Publication date: July 2, 2020
    Inventors: Stephen J. Vanslyke, Naresh C. Bhavaraju
  • Publication number: 20200170508
    Abstract: Systems and methods are provided to calibrate an analyte concentration sensor within a biological system, generally using only a signal from the analyte concentration sensor. For example, at a steady state, the analyte concentration value within the biological system is known, and the same may provide a source for calibration. Similar techniques may be employed with slow-moving averages. Variations are disclosed.
    Type: Application
    Filed: February 5, 2020
    Publication date: June 4, 2020
    Inventors: Arturo Garcia, Peter C. Simpson, Apurv Ullas Kamath, Naresh C. Bhavaraju, Stephen J. Vanslyke
  • Publication number: 20200138385
    Abstract: Systems and methods for providing sensitive and specific alarms indicative of glycemic condition are provided herein. In an embodiment, a method of processing sensor data by a continuous analyte sensor includes: evaluating sensor data using a first function to determine whether a real time glucose value meets a first threshold; evaluating sensor data using a second function to determine whether a predicted glucose value meets a second threshold; activating a hypoglycemic indicator if either the first threshold is met or if the second threshold is predicted to be met; and providing an output based on the activated hypoglycemic indicator.
    Type: Application
    Filed: December 26, 2019
    Publication date: May 7, 2020
    Inventors: Hari Hampapuram, Anna Leigh Davis, Naresh C. Bhavaraju, Apurv Ullas Kamath, Claudio Cobelli, Giovanni Sparacino, Andrea Facchinetti, Chiara Zecchin
  • Publication number: 20200096495
    Abstract: Systems and methods for processing sensor data and end of life detection are provided. In some embodiments, a method for determining the end of life of a continuous analyte sensor includes evaluating a plurality of risk factors using an end of life function to determine an end of life status of the sensor and providing an output related to the end of life status of the sensor. The plurality of risk factors may be selected from the list including the number of days the sensor has been in use, whether there has been a decrease in signal sensitivity, whether there is a predetermined noise pattern, whether there is a predetermined oxygen concentration pattern, and error between reference BG values and EGV sensor values.
    Type: Application
    Filed: November 27, 2019
    Publication date: March 26, 2020
    Inventors: Naresh C. Bhavaraju, Arturo Garcia, Hari Hampapuram, Apurv Ullas Kamath, Aarthi Mahalingam, Dmytro Sokolovskyy, Stephen J. Vanslyke
  • Publication number: 20200060630
    Abstract: Systems and methods for providing sensitive and specific alarms indicative of glycemic condition are provided herein. In an embodiment, a method of processing sensor data by a continuous analyte sensor includes: evaluating sensor data using a first function to determine whether a real time glucose value meets a first threshold; evaluating sensor data using a second function to determine whether a predicted glucose value meets a second threshold; activating a hypoglycemic indicator if either the first threshold is met or if the second threshold is predicted to be met; and providing an output based on the activated hypoglycemic indicator.
    Type: Application
    Filed: November 5, 2019
    Publication date: February 27, 2020
    Inventors: Hari Hampapuram, Anna Leigh Davis, Naresh C. Bhavaraju, Apurv Ullas Kamath, Claudio Cobelli, Giovanni Sparacino, Andrea Facchinetti, Chiara Zecchin
  • Patent number: 10470660
    Abstract: Systems and methods are provided to calibrate an analyte concentration sensor within a biological system, generally using only a signal from the analyte concentration sensor. For example, at a steady state, the analyte concentration value within the biological system is known, and the same may provide a source for calibration. Similar techniques may be employed with slow-moving averages. Variations are disclosed.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: November 12, 2019
    Assignee: DexCom, Inc.
    Inventors: Arturo Garcia, Peter C. Simpson, Apurv Ullas Kamath, Naresh C. Bhavaraju, Stephen J. Vanslyke
  • Patent number: 10470661
    Abstract: Systems and methods are provided to calibrate an analyte concentration sensor within a biological system, generally using only a signal from the analyte concentration sensor. For example, at a steady state, the analyte concentration value within the biological system is known, and the same may provide a source for calibration. Similar techniques may be employed with slow-moving averages. Variations are disclosed.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: November 12, 2019
    Assignee: DexCom, Inc.
    Inventors: Arturo Garcia, Peter C. Simpson, Apurv Ullas Kamath, Naresh C. Bhavaraju, Stephen J. Vanslyke
  • Publication number: 20190339223
    Abstract: Systems and methods are provided that address the need to frequently calibrate analyte sensors, according to implementation. In more detail, systems and methods provide a preconnected analyte sensor system that physically combines an analyte sensor to measurement electronics during the manufacturing phase of the sensor and in some cases in subsequent life phases of the sensor, so as to allow an improved recognition of sensor environment over time to improve subsequent calibration of the sensor.
    Type: Application
    Filed: May 2, 2019
    Publication date: November 7, 2019
    Inventors: Naresh C. Bhavaraju, Becky L. Clark, Vincent P. Crabtree, Chris W. Dring, Arturo Garcia, Jason Halac, Jonathan Hughes, Jeff Jackson, Lauren Hruby Jepson, David I-Chun Lee, Ted Tang Lee, Rui Ma, Zebediah L. McDaniel, Jason Mitchell, Andrew Attila Pal, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Stephen J. Vanslyke, Matthew D. Wightlin, Anna Leigh Davis, Hari Hampapuram, Aditya Sagar Mandapaka, Alexander Leroy Teeter, Liang Wang