Patents by Inventor Natalie B. Feilchenfeld

Natalie B. Feilchenfeld has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10535551
    Abstract: Lateral PiN diodes and Schottky diodes with low parasitic capacitance and variable breakdown voltage structures and methods of manufacture are disclosed. The structure includes a diode with breakdown voltage determined by a dimension between p-and n-terminals formed in an i-region above a substrate.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: January 14, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Natalie B. Feilchenfeld, Vibhor Jain, Qizhi Liu
  • Patent number: 10446644
    Abstract: Methods for forming a device structure and device structures using a silicon-on-insulator substrate that includes a high-resistance handle wafer. A doped region is formed in the high-resistance handle wafer. A first trench is formed that extends through a device layer and a buried insulator layer of the silicon-on-insulator substrate to the high-resistance handle wafer. The doped region includes lateral extension of the doped region extending laterally of the first trench. A semiconductor layer is epitaxially grown within the first trench, and a device structure is formed using at least a portion of the semiconductor layer. A second trench is formed that extends through the device layer and the buried insulator layer to the lateral extension of the doped region, and a conductive plug is formed in the second trench. The doped region and the plug comprise a body contact.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: October 15, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Renata Camillo-Castillo, Hanyi Ding, Natalie B. Feilchenfeld, Vibhor Jain, Anthony K. Stamper
  • Patent number: 10050115
    Abstract: Approaches for LDMOS devices are provided. A method of forming a semiconductor structure includes forming a gate dielectric including a first portion having a first uniform thickness, a second portion having a second uniform thickness different than the first uniform thickness, and a transition portion having tapered surface extending from the first portion to the second portion. The gate dielectric is formed on a planar upper surface of a substrate. The tapered surface is at an acute angle relative to the upper surface of the substrate.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: August 14, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Brennan J. Brown, Natalie B. Feilchenfeld, Max G. Levy, Santosh Sharma, Yun Shi, Michael J. Zierak
  • Publication number: 20180204761
    Abstract: Lateral PiN diodes and Schottky diodes with low parasitic capacitance and variable breakdown voltage structures and methods of manufacture are disclosed. The structure includes a diode with breakdown voltage determined by a dimension between p- and n-terminals formed in an i-region above a substrate.
    Type: Application
    Filed: March 13, 2018
    Publication date: July 19, 2018
    Inventors: Natalie B. FEILCHENFELD, Vibhor JAIN, Qizhi LIU
  • Patent number: 9947573
    Abstract: Lateral PiN diodes and Schottky diodes with low parasitic capacitance and variable breakdown voltage structures and methods of manufacture are disclosed. The structure includes a diode with breakdown voltage determined by a dimension between p- and n-terminals formed in an i-region above a substrate.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: April 17, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Natalie B. Feilchenfeld, Vibhor Jain, Qizhi Liu
  • Patent number: 9893157
    Abstract: Structures that include contact trenches and isolation trenches, as well as methods for forming structures including contact trenches and isolation trenches. A contact trench is formed that extends through a device layer of a silicon-on-insulator (SOI) substrate to a buried oxide layer of the SOI substrate. An isolation trench is formed that extends through the device layer to the buried oxide layer. An electrical insulator is deposited that fills the contact trench and the first isolation trench. The electrical insulator is removed from the contact trench. After the electrical insulator is removed from the contact trench, an electrical conductor is formed in the contact trench. The electrical contact may be coupled with a doped region in a handle wafer of the SOI substrate.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: February 13, 2018
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Natalie B. Feilchenfeld, Michael J. Zierak, Max G. Levy, BethAnn Lawrence
  • Patent number: 9799652
    Abstract: Disclosed are methods that employ a mask with openings arranged in a pattern of elongated trenches and holes of varying widths to achieve a linearly graded conductivity level. These methods can be used to form a lateral double-diffused metal oxide semiconductor field effect transistor (LDMOSFET) with a drain drift region having an appropriate type conductivity at a level that increases essentially linearly from the body region to the drain region. Furthermore, these methods also provide for improve manufacturability in that multiple instances of this same pattern can be used during a single dopant implant process to implant a first dopant with a first type (e.g., N-type) conductivity into the drain drift regions of both first and second type LDMOSFETs (e.g., N and P-type LDMOSFETs, respectively). In this case, the drain drift region of a second type LDMOSFET can subsequently be uniformly counter-doped. Also disclosed are the resulting semiconductor structures.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: October 24, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Natalie B. Feilchenfeld, Michael J. Zierak, Theodore J. Letavic, Yun Shi, Santosh Sharma
  • Patent number: 9786606
    Abstract: A method of forming a semiconductor structure in a semiconductor-on-insulator (SOI) substrate and semiconductor structure so formed are provided. The SOI substrate includes a semiconductor layer; a bulk semiconductor region underlying the semiconductor layer; and an insulation layer between the two. The structure includes first and second openings each having sidewalls, each of the first opening and the second opening formed substantially simultaneously and extending from a top surface of the semiconductor layer through the semiconductor layer and through the insulation layer to the conductive region; an insulating material adapted to provide electrical insulation to at least a portion of the side walls of the first opening; a semiconductor material at least partially filling the first opening, the semiconductor material defining an ohmic contact trench providing electrical contact with the semiconductor region; and an insulating material disposed in the second opening and defining a device isolation trench.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: October 10, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Natalie B. Feilchenfeld, BethAnn Lawrence, Yun Shi
  • Patent number: 9768028
    Abstract: Disclosed are methods that employ a mask with openings arranged in a pattern of elongated trenches and holes of varying widths to achieve a linearly graded conductivity level. These methods can be used to form a lateral double-diffused metal oxide semiconductor field effect transistor (LDMOSFET) with a drain drift region having an appropriate type conductivity at a level that increases essentially linearly from the body region to the drain region. Furthermore, these methods also provide for improve manufacturability in that multiple instances of this same pattern can be used during a single dopant implant process to implant a first dopant with a first type (e.g., N-type) conductivity into the drain drift regions of both first and second type LDMOSFETs (e.g., N and P-type LDMOSFETs, respectively). In this case, the drain drift region of a second type LDMOSFET can subsequently be uniformly counter-doped. Also disclosed are the resulting semiconductor structures.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: September 19, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Natalie B. Feilchenfeld, Michael J. Zierak, Theodore J. Letavic, Yun Shi, Santosh Sharma
  • Patent number: 9595579
    Abstract: Various embodiments include structures for field effect transistors (FETs). In various embodiments, a structure for a FET includes: a deep n-type well; a shallow n-type well within the deep n-type well; and a shallow trench isolation (STI) region within the shallow n-type well, the STI region including: a first section having a first depth within the shallow n-type well as measured from an upper surface of the shallow n-type well, and a second section contacting and overlying the first section, the second section having a second depth within the shallow n-type well as measured from the upper surface of the shallow n-type well.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: March 14, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Natalie B. Feilchenfeld, Max G. Levy, Richard A. Phelps, Santosh Sharma, Yun Shi, Michael J. Zierak
  • Publication number: 20160372582
    Abstract: Methods for forming a device structure and device structures using a silicon-on-insulator substrate that includes a high-resistance handle wafer. A doped region is formed in the high-resistance handle wafer. A first trench is formed that extends through a device layer and a buried insulator layer of the silicon-on-insulator substrate to the high-resistance handle wafer. The doped region includes lateral extension of the doped region extending laterally of the first trench. A semiconductor layer is epitaxially grown within the first trench, and a device structure is formed using at least a portion of the semiconductor layer. A second trench is formed that extends through the device layer and the buried insulator layer to the lateral extension of the doped region, and a conductive plug is formed in the second trench. The doped region and the plug comprise a body contact.
    Type: Application
    Filed: June 22, 2015
    Publication date: December 22, 2016
    Inventors: Renata Camillo-Castillo, Hanyi Ding, Natalie B. Feilchenfeld, Vibhor Jain, Anthony K. Stamper
  • Publication number: 20160190269
    Abstract: Approaches for LDMOS devices are provided. A method of forming a semiconductor structure includes forming a gate dielectric including a first portion having a first uniform thickness, a second portion having a second uniform thickness different than the first uniform thickness, and a transition portion having tapered surface extending from the first portion to the second portion. The gate dielectric is formed on a planar upper surface of a substrate. The tapered surface is at an acute angle relative to the upper surface of the substrate.
    Type: Application
    Filed: December 30, 2014
    Publication date: June 30, 2016
    Inventors: Brennan J. Brown, Natalie B. Feilchenfeld, Max G. Levy, Santosh Sharma, Yun Shi, Michael J. Zierak
  • Publication number: 20160190067
    Abstract: A method of forming a semiconductor structure in a semiconductor-on-insulator (SOI) substrate and semiconductor structure so formed are provided. The SOI substrate includes a semiconductor layer; a bulk semiconductor region underlying the semiconductor layer; and an insulation layer between the two. The structure includes first and second openings each having sidewalls, each of the first opening and the second opening formed substantially simultaneously and extending from a top surface of the semiconductor layer through the semiconductor layer and through the insulation layer to the conductive region; an insulating material adapted to provide electrical insulation to at least a portion of the side walls of the first opening; a semiconductor material at least partially filling the first opening, the semiconductor material defining an ohmic contact trench providing electrical contact with the semiconductor region; and an insulating material disposed in the second opening and defining a device isolation trench.
    Type: Application
    Filed: March 10, 2016
    Publication date: June 30, 2016
    Inventors: Natalie B. Feilchenfeld, BethAnn Lawrence, Yun Shi
  • Patent number: 9324632
    Abstract: A method of forming a semiconductor structure in a semiconductor-on-insulator (SOI) substrate and semiconductor structure so formed are provided. The SOI substrate includes a semiconductor layer; a bulk semiconductor region underlying the semiconductor layer; and an insulation layer between the two. The method includes substantially simultaneously forming a first opening and a second opening extending from the semiconductor layer to the conductive region; introducing an insulating material to the side walls of the first opening; at least partially filling the first opening with a semiconductor material to provide an ohmic contact trench; and at least partially filling the second opening with an insulating material to form a device isolation trench. Insulating regions, for example, shallow trench isolation (STI) regions, may be formed about the device isolation trench and the ohmic contact trench. Semiconductor structures are also provided.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: April 26, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Natalie B. Feilchenfeld, BethAnn Lawrence, Yun Shi
  • Publication number: 20160064475
    Abstract: Lateral PiN diodes and Schottky diodes with low parasitic capacitance and variable breakdown voltage structures and methods of manufacture are disclosed. The structure includes a diode with breakdown voltage determined by a dimension between p- and n-terminals formed in an i-region above a substrate.
    Type: Application
    Filed: September 3, 2014
    Publication date: March 3, 2016
    Inventors: Natalie B. FEILCHENFELD, Vibhor JAIN, Qizhi LIU
  • Publication number: 20160043202
    Abstract: A collector region is formed between insulating shallow trench isolation regions within a substrate. A base material is epitaxially grown on the collector region and the shallow trench isolation regions. The base material forms a base region on the collector region and extrinsic base regions on the shallow trench isolation regions. Further, a sacrificial emitter structure is patterned on the base region and sidewall spacers are formed on the sacrificial emitter structure. Planar raised base structures are epitaxially grown on the base region and the extrinsic base regions, and the upper layer of the raised base structures is oxidized. The sacrificial emitter structure is removed to leave an open space between the sidewall spacers and an emitter is formed within the open space between the sidewall spacers. The upper layer of the raised base structures comprises a planar insulator electrically insulating the emitter from the raised base structures.
    Type: Application
    Filed: October 26, 2015
    Publication date: February 11, 2016
    Inventors: Natalie B. Feilchenfeld, Qizhi Liu
  • Publication number: 20150348870
    Abstract: A method of forming a semiconductor structure in a semiconductor-on-insulator (SOI) substrate and semiconductor structure so formed are provided. The SOI substrate includes a semiconductor layer; a bulk semiconductor region underlying the semiconductor layer; and an insulation layer between the two. The method includes substantially simultaneously forming a first opening and a second opening extending from the semiconductor layer to the conductive region; introducing an insulating material to the side walls of the first opening; at least partially filling the first opening with a semiconductor material to provide an ohmic contact trench; and at least partially filling the second opening with an insulating material to form a device isolation trench. Insulating regions, for example, shallow trench isolation (STI) regions, may be formed about the device isolation trench and the ohmic contact trench. Semiconductor structures are also provided.
    Type: Application
    Filed: May 28, 2014
    Publication date: December 3, 2015
    Applicant: International Business Machines Corporation
    Inventors: Natalie B. Feilchenfeld, BethAnn Lawrence, Yun Shi
  • Patent number: 9202869
    Abstract: A collector region is formed between insulating shallow trench isolation regions within a substrate. A base material is epitaxially grown on the collector region and the shallow trench isolation regions. The base material forms a base region on the collector region and extrinsic base regions on the shallow trench isolation regions. Further, a sacrificial emitter structure is patterned on the base region and sidewall spacers are formed on the sacrificial emitter structure. Planar raised base structures are epitaxially grown on the base region and the extrinsic base regions, and the upper layer of the raised base structures is oxidized. The sacrificial emitter structure is removed to leave an open space between the sidewall spacers and an emitter is formed within the open space between the sidewall spacers. The upper layer of the raised base structures comprises a planar insulator electrically insulating the emitter from the raised base structures.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: December 1, 2015
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Natalie B. Feilchenfeld, Qizhi Liu
  • Publication number: 20150255539
    Abstract: Various embodiments include field effect transistor (FET) structures and methods of forming such structures. In various embodiments, an FET structure includes: a deep n-type well; a shallow n-type well within the deep n-type well; and a shallow trench isolation (STI) region within the shallow n-type well, the STI region including: a first section having a first depth within the shallow n-type well as measured from an upper surface of the shallow n-type well, and a second section contacting and overlying the first section, the second section having a second depth within the shallow n-type well as measured from the upper surface of the shallow n-type well.
    Type: Application
    Filed: May 14, 2015
    Publication date: September 10, 2015
    Inventors: Natalie B. Feilchenfeld, Max G. Levy, Richard A. Phelps, Santosh Sharma, Yun Shi, Michael J. Zierak
  • Patent number: 9059276
    Abstract: High-voltage LDMOS devices with voltage linearizing field plates and methods of manufacture are disclosed. The method includes forming an insulator layer of varying depth over a drift region and a body of a substrate. The method further includes forming a control gate and a split gate region by patterning a layer of material on the insulator layer. The split gate region is formed on a first portion of the insulator layer and the control gate is formed on a second portion of the insulator layer, which is thinner than the first portion.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: June 16, 2015
    Assignee: International Business Machines Corporation
    Inventors: Natalie B. Feilchenfeld, Theodore J. Letavic, Richard A. Phelps, Santosh Sharma, Yun Shi, Michael J. Zierak