Patents by Inventor Nathan A. Torgerson

Nathan A. Torgerson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110172737
    Abstract: This disclosure describes techniques for programming stimulation therapy programs according to therapy targets (e.g., symptoms or areas of pain) in a patient to which they are applied. Several programs can be programmed for each therapy target, stored on an implantable medical device, and retrieved later by a programmer to modify, edit, delete, create, and/or select a therapy program for each of the therapy targets. Each therapy target is independent from the other therapy targets, and a user can select or change a program under one therapy target without affecting programs under the other therapy targets. During programming, a user can specify parameters for each program applicable to only that program, and can specify parameters for each therapy target applicable to every program associated with that therapy target. The organization of programs into slots and the selection of a program in each slot may be manual or automated.
    Type: Application
    Filed: January 6, 2011
    Publication date: July 14, 2011
    Applicant: Medtronic, Inc.
    Inventors: Jon P. Davis, Steven M. Goetz, Nathan A. Torgerson, Wende L. Dewing, Ashish Singal, Lynn A. Davenport, Rajeev M. Sahasrabudhe
  • Publication number: 20110171905
    Abstract: Devices and systems provide for proximity based selection of an implantable medical device for far field communication with an external device. By using a proximity communication that is limited to the IMD of interest during the selection process, the external device can eliminate those IMDs that are in range of far field communications but are able to receive the proximity communication. Thus, information may be shared via a proximity communication that is validated via a far field communication, or shared via a far field communication as a challenge and then validated via a proximity communication. The proximity communication may be used to initially limit the number of devices that respond to a discovery request and then subsequently used to select the intended implantable medical device as well as automatically select the appropriate therapy application corresponding to the selected IMD.
    Type: Application
    Filed: January 13, 2010
    Publication date: July 14, 2011
    Inventors: Earle T. Roberts, Donald L. Villalta, David S. Slack, Irfan Z. Ali, Sudheendhar Raghavendran, Nathan A. Torgerson, Garrett R. Sipple
  • Publication number: 20110172741
    Abstract: Devices and systems provide for proximity based selection of an implantable medical device for far field communication with an external device. By using a proximity communication that is limited to the IMD of interest during the selection process, the external device can eliminate those IMDs that are in range of far field communications but are able to receive the proximity communication. Thus, information may be shared via a proximity communication that is validated via a far field communication, or shared via a far field communication as a challenge and then validated via a proximity communication. The proximity communication may be used to initially limit the number of devices that respond to a discovery request and then subsequently used to select the intended implantable medical device as well as automatically select the appropriate therapy application corresponding to the selected IMD.
    Type: Application
    Filed: January 13, 2010
    Publication date: July 14, 2011
    Inventors: Earle T. Roberts, Donald L. Villalta, David S. Slack, Irfan Z. Ali, Sudheendhar Raghavendran, Nathan A. Torgerson, Garrett R. Sipple
  • Patent number: 7974703
    Abstract: Techniques for shifting between two electrode combinations. An amplitude of a first electrode combination is incrementally decreased while an amplitude of a second, or subsequent, electrode combination is concurrently incrementally increased. Alternatively, an amplitude of the first electrode combination is maintained at a target amplitude level while the amplitude of the second electrode combination is incrementally increased. The stimulation pulses of the electrode combinations are delivered to the patient interleaved in time. In this manner, the invention provides for a smooth, gradual shift from a first electrode combination to a second electrode combination, allowing the patient to maintain a continual perception of stimulation. The shifting techniques described herein may be used during programming to shift between different electrode combinations to find an efficacious electrode combination.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: July 5, 2011
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Gary W. King, Kenneth T. Heruth, Roy L. Testerman, Michael T. Lee, Nathan A. Torgerson, Joseph J. Nolan
  • Patent number: 7962211
    Abstract: System, method and antenna for an external power source for an implantable medical device having therapeutic componentry and a secondary coil operatively coupled to the therapeutic componentry. A housing has a first surface adapted to be placed closest to the secondary coil of the implantable medical device. A primary coil is operatively coupled to the external power and is capable of inductively energizing the secondary coil, the primary coil being wound forming generally concentric loops having an axis. The housing has a protrusion extending from the first surface.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: June 14, 2011
    Assignee: Medtronic, Inc.
    Inventors: Nathan A. Torgerson, John E. Kast, Kevin J. Kelly, Todd P. Goblish
  • Patent number: 7957814
    Abstract: The disclosure is directed to techniques for shifting between two electrode combinations. An amplitude of a first electrode combination is incrementally decreased while an amplitude of a second, or subsequent, electrode combination is concurrently incrementally increased. Alternatively, an amplitude of the first electrode combination is maintained at a target amplitude level while the amplitude of the second electrode combination is incrementally increased. The stimulation pulses of the electrode combinations are delivered to the patient interleaved in time. In this manner, the invention provides for a smooth, gradual shift from a first electrode combination to a second electrode combination, allowing the patient to maintain a continual perception of stimulation. The shifting techniques described herein may be used during programming to shift between different electrode combinations to find an efficacious electrode combination.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: June 7, 2011
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Gary W. King, Kenneth T. Heruth, Roy L. Testerman, Michael T. Lee, Nathan A. Torgerson, Joseph J. Nolan
  • Publication number: 20110125215
    Abstract: This disclosure describes delivery of omnipolar electrical stimulation with an external electrical stimulator. Omnipolar electrical stimulation may involve stimulation with an electrode carried on the housing of an implantable medical device (IMD) while substantially simultaneously delivering stimulation via one or more implanted electrodes having the same polarity as the electrode on the housing. An external medical device (EMD) may simulate the IMD housing electrode with an electrode separate from the electrodes carried on leads implanted near target tissue. This electrode may be an external electrode carried on the external housing of the EMD or an external patch electrode. Alternatively, the electrode may be an implantable electrode coupled to the EMD. The conductivity of the external or implantable electrode may also be optimized to approximate the conductivity of the IMD housing electrode. This electrode coupled to the EMD may be utilized during trial stimulation or chronic, external, stimulation.
    Type: Application
    Filed: July 1, 2010
    Publication date: May 26, 2011
    Applicant: Medtronic, Inc.
    Inventors: Steven M. Goetz, Nathan A. Torgerson
  • Publication number: 20110125214
    Abstract: This disclosure describes delivery of omnipolar electrical stimulation with an external electrical stimulator. Omnipolar electrical stimulation may involve stimulation with an electrode carried on the housing of an implantable medical device (IMD) while substantially simultaneously delivering stimulation via one or more implanted electrodes having the same polarity as the electrode on the housing. An external medical device (EMD) may simulate the IMD housing electrode with an electrode separate from the electrodes carried on leads implanted near target tissue. This electrode may be an external electrode carried on the external housing of the EMD or an external patch electrode. Alternatively, the electrode may be an implantable electrode coupled to the EMD. The conductivity of the external or implantable electrode may also be optimized to approximate the conductivity of the IMD housing electrode. This electrode coupled to the EMD may be utilized during trial stimulation or chronic, external, stimulation.
    Type: Application
    Filed: July 1, 2010
    Publication date: May 26, 2011
    Applicant: Medtronic, Inc.
    Inventors: Steven M. Goetz, Nathan A. Torgerson
  • Publication number: 20110106213
    Abstract: In one aspect, a programmer for an implantable medical device comprises a user interface that receives user input corresponding to one or more selected stimulation therapy parameters for delivering stimulation therapy to a patient with the implantable medical device and presents an energy consumption estimate of a power source based on the selected stimulation therapy parameters; and a processor that determines one or more programming options that, if selected, would alter the selected stimulation therapy parameters and reduce the energy consumption estimate. The user interface presents at least one of the programming options to reduce the energy consumption estimate to the user with an indication that user selection of one or more of the presented programming options would alter the selected stimulation therapy parameters to reduce energy consumption of the implantable medical device.
    Type: Application
    Filed: April 30, 2010
    Publication date: May 5, 2011
    Applicant: Medtronic, Inc.
    Inventors: Jon P. Davis, Steven M. Goetz, Nathan A. Torgerson, Ashish Singal, Lynn A. Davenport, Rajeev M. Sahasrabudhe, Shyam Gokaldas, Joel A. Anderson, Leroy L. Perz, Scott E. Straka
  • Publication number: 20110093041
    Abstract: This disclosure describes generation of electrical stimulation pulses for electrical stimulation therapy. The stimulation pulses have a pulse current level and pulse width, and may be generated by a current regulator. The pulse voltage level may be a voltage level delivered by the current regulator while maintaining regulation of the pulse current level. During delivery of a pulse, a supply voltage level may decrease due to discharging of a supply capacitance, and the pulse voltage level may increase due to charging of a load capacitance. The pulse current level may be controlled to decrease during the pulse width such that a sum of the pulse voltage level and a headroom voltage of the current regulator does not exceed the supply voltage level. In some examples, the pulse may include sub-pulses with different sub-pulse current levels, where an earlier sub-pulse has a higher pulse current level than a later sub-pulse.
    Type: Application
    Filed: October 21, 2009
    Publication date: April 21, 2011
    Applicant: Medtronic, Inc.
    Inventors: Scott E. Straka, Nathan A. Torgerson
  • Publication number: 20110093030
    Abstract: Various programming techniques are described for medical devices that deliver electrical stimulation therapy that may include mapping between discrete electrical stimulation parameters and a graphical view of the electrical stimulation representing a stimulation zone generated by the parameters. In one example, a method includes receiving, via a programmer for an electrical stimulator, user input that graphically manipulates at least one of size and a shape of a graphical representation of at least one electrical stimulation zone displayed on the programmer, and defining a program to control delivery of electrical stimulation therapy based on the user input.
    Type: Application
    Filed: October 18, 2010
    Publication date: April 21, 2011
    Applicant: Medtronic, Inc.
    Inventors: Steven M. Goetz, Jon P. Davis, Nathan A. Torgerson, Shyam Gokaldas, Ashish Singal, Rajeev M. Sahasrabudhe, Brent A. Huhta
  • Publication number: 20110093042
    Abstract: This disclosure describes techniques that support delivering electrical stimulation via an electrode on a housing of an implantable medical device (IMD) while substantially simultaneously delivering electrical stimulation via one or more electrodes, having the same polarity as the electrode on the housing, on one or more leads engaged to the IMD. The stimulation may be constant current-based or constant voltage-based stimulation in the form of pulses or continuous waveforms. Delivery of stimulation via both a housing anode and one or more lead anodes, for example, may allow a user to control current paths between the housing electrode and the lead electrode(s) in a relative manner to achieve different electric or stimulation field shapes.
    Type: Application
    Filed: January 29, 2010
    Publication date: April 21, 2011
    Applicant: Medtronic, Inc.
    Inventors: Nathan A. Torgerson, Steven M. Goetz
  • Publication number: 20110093047
    Abstract: This disclosure describes techniques for obtaining an image of an anatomical implant region where leads associated with an implantable medical device are implanted in a patient, manipulating the image to show lead locations and placements, performing necessary image compression and manipulations, adjusting the image to associate it with information (e.g., patient, metadata, annotations, etc.) useful to a subsequent programmer retrieving the image, and transferring a copy of the captured image to the implantable medical device. The image stored in the implantable medical device may be retrieved at a later time by a user of programmer, where the user can use the image and other associated information to program subsequent therapy.
    Type: Application
    Filed: April 30, 2010
    Publication date: April 21, 2011
    Applicant: Medtronic, Inc.
    Inventors: Jon P. Davis, Steven M. Goetz, Nathan A. Torgerson, Wende L. Dewing, Ashish Singal, Lynn A. Davenport, Rajeev M. Sahasrabudhe, Brent A. Huhta
  • Publication number: 20110093043
    Abstract: This disclosure describes techniques that support delivering electrical stimulation via an electrode on a housing of an implantable medical device (IMD) while substantially simultaneously delivering electrical stimulation via one or more electrodes, having the same polarity as the electrode on the housing, on one or more leads engaged to the IMD. The stimulation may be constant current-based or constant voltage-based stimulation in the form of pulses or continuous waveforms. Delivery of stimulation via both a housing anode and one or more lead anodes, for example, may allow a user to control current paths between the housing electrode and the lead electrode(s) in a relative manner to achieve different electric or stimulation field shapes.
    Type: Application
    Filed: January 29, 2010
    Publication date: April 21, 2011
    Applicant: Medtronic, Inc.
    Inventors: Nathan A. Torgerson, Steven M. Goetz
  • Publication number: 20110077720
    Abstract: An implantable medical device having an implantable power source such as a rechargeable lithium ion battery. The implantable medical device includes a recharge module that regulates the recharging process of the implantable power source using closed-loop feedback control. The recharge module includes a recharge regulator, a recharge measurement device monitoring at least one recharge parameter, and a recharge regulation control unit for regulating the recharge energy delivered to the power source in response to the recharge measurement device. The recharge module adjusts the energy provided to the power source to ensure that the power source is being recharged under safe levels.
    Type: Application
    Filed: December 2, 2010
    Publication date: March 31, 2011
    Inventors: Nathan A. Torgerson, James E. Riekels
  • Patent number: 7865245
    Abstract: An implantable medical device having an implantable power source such as a rechargeable lithium ion battery. The implantable medical device includes a recharge module that regulates the recharging process of the implantable power source using closed-loop feedback control. The recharge module includes a recharge regulator, a recharge measurement device monitoring at least one recharge parameter, and a recharge regulation control unit for regulating the recharge energy delivered to the power source in response to the recharge measurement device. The recharge module adjusts the energy provided to the power source to ensure that the power source is being recharged under safe levels.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: January 4, 2011
    Assignee: Medtronic, Inc.
    Inventors: Nathan A. Torgerson, James E. Riekels
  • Patent number: 7848814
    Abstract: System for transcutaneous energy transfer to an implantable medical device adapted to be implanted under a cutaneous boundary having a housing having a first surface adapted to face the cutaneous boundary, the first surface of the housing of the implantable medical device having a first mating element, therapeutic componentry and a secondary coil operatively coupled to the therapeutic componentry. An external power source has housing having a first surface adapted to be placed closest to the cutaneous boundary, the first surface of the housing of the external power source having a second mating element and a primary coil capable of inductively energizing the secondary coil when externally placed in proximity of the secondary coil. The first mating element and the second mating element are configured to tactilely align the external power source with the implantable medical device.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: December 7, 2010
    Assignee: Medtronic, Inc.
    Inventors: Nathan A. Torgerson, John E. Kast, Kevin J. Kelly, Todd P. Goblish
  • Patent number: 7826901
    Abstract: A programmer allows a clinician to identify desirable combinations of electrodes from within an electrode set implanted in a patient that enable delivery of desirable neurostimulation therapy by an implantable medical device. The clinician may create neurostimulation therapy programs that include identified desirable electrode combinations. In some embodiments, the clinician may use the programmer to select a program, such as a program identified during a neurostimulation programming session, and direct the programmer to replicate the selected program. The programmer may change one or more parameters of the selected program, such as pulse amplitude or duty cycle, when generating the copy of the selected program.
    Type: Grant
    Filed: April 26, 2004
    Date of Patent: November 2, 2010
    Assignee: Medtronic, Inc.
    Inventors: Michael T. Lee, Steven M. Goetz, Nathan A. Torgerson
  • Publication number: 20100274320
    Abstract: Techniques for programming electrical stimulation therapy intensity based on electrical charge are described. In some examples, a display presents a stimulation intensity value in units of electrical charge, e.g., Coulombs. In such examples, a user may adjust the displayed charge value, rather than pulse amplitude or pulse width, to adjust the intensity of the electrical stimulation therapy. In some examples, a processor determines modifications to pulse amplitude and pulse width based on the modification to the charge value. In some examples, a processor modifies a pulse amplitude and width to achieve a desired charge, while maintaining a relationship between pulse amplitude and width specified by a predetermined function. In some examples, the function may be programmed, e.g., selected or adjusted, by a user.
    Type: Application
    Filed: April 24, 2009
    Publication date: October 28, 2010
    Inventor: Nathan A. Torgerson
  • Patent number: 7818060
    Abstract: Techniques for determining whether a medical device will be able to deliver stimulation according to a particular program throughout a useable voltage range of a power source of the medical device are described. According to some examples, the medical device charges a charge pump to a level sufficient to provide a stimulation output according to a stimulation program, determines a length of time that the charge pump charges at the present power source voltage level, and determines a time between stimulation pulses of the stimulation program. Whether the medical device will be able to deliver stimulation according to the program when the power source is at a power source voltage level lower than the present voltage level is determined based on the length of time the charge pump charges at the present voltage level of the power source and the time between stimulation pulses.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: October 19, 2010
    Assignee: Medtronic, Inc.
    Inventor: Nathan A. Torgerson