Patents by Inventor Nathan A. Torgerson

Nathan A. Torgerson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090276010
    Abstract: Method, controller and system for an implantable medical device having a plurality of electrodes, the implantable medical device capable of delivering therapeutic stimulation to a patient, comprising a control module, a user interface operatively coupled to the control module, the user interface providing control of the control module by a medical professional or other user, and an electrode interface operatively coupled between the plurality of electrodes and the control module. The control module uses the electrode interface to obtain a plurality of measurements of impedance values for a plurality of selected pairs of individual ones of the plurality of electrodes. The control module flags electrodes using the plurality of measurements of impedance values of the selected pairs of individual ones of the plurality of electrodes comparative to a range, and the delivery of therapy on flagged electrodes is inhibited.
    Type: Application
    Filed: April 30, 2008
    Publication date: November 5, 2009
    Inventors: Steven M. Goetz, Todd V. Smith, Nathan A. Torgerson, Warren W. Ball
  • Publication number: 20090264956
    Abstract: A therapy system for managing a psychiatric disorder of the patient may be controlled based on a patient mood state. Therapy may be delivered to a patient according to a therapy program, and a physiological parameter of the patient may be monitored during or after therapy delivery. The patient mood state may be determined based on the monitored physiological parameter, and the therapy delivery may be controlled based on the determined mood state. In some embodiments, the therapy delivery is stopped prior to determining the patient mood state and the therapy delivery is restarted upon detecting a negative mood state. In other embodiments, therapy delivery is delivered until a positive mood state is detected, at which point the therapy delivery may be stopped.
    Type: Application
    Filed: April 17, 2009
    Publication date: October 22, 2009
    Applicant: Medtronic, Inc.
    Inventors: Mark T. Rise, Jonathon E. Giftakis, Paul H. Stypulkowski, Timothy J. Denison, Nathan A. Torgerson
  • Publication number: 20090259278
    Abstract: Apparatus and method provide flexibility in generating a stimulation waveform to an electrode of an Implantable Neuro Stimulator (INS). The stimulation waveform is synthesized for each rate period interval. Each rate period interval is partitioned into time intervals, during which stimulation pulses, recharging, and time duration delays may be induced. With the embodiment of the invention, a second stimulation pulse, having different electrical characteristics than a first stimulation pulse, may be generated during the rate period interval. An embodiment utilizes apparatus comprising a waveform controller and a waveform generator that are controlled by the waveform controller. The waveform controller uses waveform parameters to instruct the waveform generator to form stimulation pulses. Any of the components may be adjusted or deleted in the generation of the stimulation waveform.
    Type: Application
    Filed: January 26, 2009
    Publication date: October 15, 2009
    Inventors: Nathan A. Torgerson, Robert Leinders, Marc Stein, Todd P. Goblish, Todd D. Heathershaw, John Delfin Rodriguez
  • Publication number: 20090234422
    Abstract: The disclosure is directed to techniques for shifting between two electrode combinations. An amplitude of a first electrode combination is incrementally decreased while an amplitude of a second, or subsequent, electrode combination is concurrently incrementally increased. Alternatively, an amplitude of the first electrode combination is maintained at a target amplitude level while the amplitude of the second electrode combination is incrementally increased. The stimulation pulses of the electrode combinations are delivered to the patient interleaved in time. In this manner, the invention provides for a smooth, gradual shift from a first electrode combination to a second electrode combination, allowing the patient to maintain a continual perception of stimulation. The shifting techniques described herein may be used during programming to shift between different electrode combinations to find an efficacious electrode combination.
    Type: Application
    Filed: March 18, 2009
    Publication date: September 17, 2009
    Inventors: Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Gary W. King, Kenneth T. Heruth, Roy L. Testerman, Michael T. Lee, Nathan A. Torgerson, Joseph J. Nolan
  • Publication number: 20090228070
    Abstract: The disclosure is directed to techniques for shifting between two electrode combinations. An amplitude of a first electrode combination is incrementally decreased while an amplitude of a second, or subsequent, electrode combination is concurrently incrementally increased. Alternatively, an amplitude of the first electrode combination is maintained at a target amplitude level while the amplitude of the second electrode combination is incrementally increased. The stimulation pulses of the electrode combinations are delivered to the patient interleaved in time. In this manner, the invention provides for a smooth, gradual shift from a first electrode combination to a second electrode combination, allowing the patient to maintain a continual perception of stimulation. The shifting techniques described herein may be used during programming to shift between different electrode combinations to find an efficacious electrode combination.
    Type: Application
    Filed: February 25, 2009
    Publication date: September 10, 2009
    Inventors: Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Gary W. `King, Kenneth T. Heruth, Roy L. Testerman, Michael T. Lee, Nathan A. Torgerson, Joseph J. Nolan
  • Publication number: 20090132009
    Abstract: Techniques for determining whether a medical device will be able to deliver stimulation according to a particular program throughout a voltage range of a power source of the medical device are described. According to some examples, the medical device simulates a power source voltage level lower than a present voltage level of the power source, and delivers stimulation according to the program while simulating the lower power source voltage level. Whether medical device will be able to deliver stimulation according to the program when the power source is actually at the lower voltage level is determined based on an electrical parameter measured during the delivery of stimulation while simulating the lower voltage level. The simulation and determination for a program may be performed, as an example, when the program is created or modified.
    Type: Application
    Filed: November 21, 2007
    Publication date: May 21, 2009
    Applicant: Medtronic, Inc.
    Inventor: Nathan A. Torgerson
  • Patent number: 7519431
    Abstract: The disclosure is directed to techniques for shifting between two electrode combinations. An amplitude of a first electrode combination is incrementally decreased while an amplitude of a second, or subsequent, electrode combination is concurrently incrementally increased. Alternatively, an amplitude of the first electrode combination is maintained at a target amplitude level while the amplitude of the second electrode combination is incrementally increased. The stimulation pulses of the electrode combinations are delivered to the patient interleaved in time. In this manner, the invention provides for a smooth, gradual shift from a first electrode combination to a second electrode combination, allowing the patient to maintain a continual perception of stimulation. The shifting techniques described herein may be used during programming to shift between different electrode combinations to find an efficacious electrode combination.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: April 14, 2009
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Gary W. King, Kenneth T. Heruth, Roy L. Testerman, Michael T. Lee, Nathan A. Torgerson, Joseph J. Nolan
  • Patent number: 7489966
    Abstract: Apparatus and method for independently delivering a plurality of therapy programs in an implantable medical device. A therapy controller configures the device to generate independent pulse trains associated with a plurality of therapy programs and dynamically configures the electrodes to deliver the independent pulse trains to the patient. Once configured, the implantable medical device delivers the plurality of therapy programs to the patient wherein the therapy programs may overlap in time.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: February 10, 2009
    Assignee: Medtronic, Inc.
    Inventors: Robert Leinders, Nathan A. Torgerson, Mark T. Stein, Todd P. Goblish, Todd D. Heathershaw, John Delfin Rodriguez
  • Patent number: 7483748
    Abstract: Apparatus and method provide flexibility in generating a stimulation waveform to an electrode of an Implantable Neuro Stimulator (INS). The stimulation waveform is synthesized for each rate period interval. Each rate period interval is partitioned into time intervals, during which stimulation pulses, recharging, and time duration delays may be induced. With the embodiment of the invention, a second stimulation pulse, having different electrical characteristics than a first stimulation pulse, may be generated during the rate period interval. An embodiment utilizes apparatus comprising a waveform controller and a waveform generator that are controlled by the waveform controller. The waveform controller uses waveform parameters to instruct the waveform generator to form stimulation pulses. Any of the components may be adjusted or deleted in the generation of the stimulation waveform.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: January 27, 2009
    Assignee: Medtronic, Inc.
    Inventors: Nathan A. Torgerson, Robert Leinders, Mark Stein, Todd P. Goblish, Todd D. Heathershaw, John Delfin Rodriguez
  • Publication number: 20090018619
    Abstract: The disclosure provides techniques for parameter-directed shifting of electrical stimulation electrode combinations. An external programmer permits a user to shift electrode combinations, e.g., along the length of a lead or leads. The external programmer accepts shift input and causes an electrical stimulator to shift electrode combinations as indicated by the input. Different sets of electrodes may have different electrode counts. For example, an array of electrodes carried by one lead may have a greater number of electrodes than an array of electrodes carried on another lead. The disclosure provides techniques for shifting electrode combinations among leads with different electrode counts. For example, an external programmer may execute shifts in a series of shift operations, where the number of shift operations along the length of a lead having a greater electrode count is greater than the number of shift steps along the length of a lead having a lesser electrode count.
    Type: Application
    Filed: April 28, 2008
    Publication date: January 15, 2009
    Applicant: Medtronic, Inc.
    Inventors: Dennis M. Skelton, Joseph J. Nolan, Nathan A. Torgerson, Wende L. Dewing, Todd V. Smith, Shyam Gokaldas, Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher
  • Publication number: 20090018617
    Abstract: The disclosure provides techniques for parameter-directed shifting of electrical stimulation electrode combinations having substantially similar electrode patterns. An external programmer permits a user to shift electrode combinations along the length of a lead or leads. The external programmer accepts parameter-directed shift input and causes an electrical stimulator to shift electrode combinations as indicated. The external programmer may present an electrode combination as a parameter that can be adjusted or selected to shift the electrode combination along the length of a lead. An electrode combination may be presented as a value that can be incremented, decremented, or otherwise adjusted to indicate a shift in a desired direction. An external programmer that permits a patient or other user to shift electrode combinations in a manner similar to adjustments of other parameters may enable the patient to maintain or improve therapeutic efficacy.
    Type: Application
    Filed: April 28, 2008
    Publication date: January 15, 2009
    Applicant: Medtronic, Inc.
    Inventors: Dennis M. Skelton, Joseph J. Nolan, Nathan A. Torgerson, Wende L. Dewing, Todd V. Smith, Shyam Gokaldas
  • Patent number: 7463928
    Abstract: A programmer allows a clinician to identify combinations of electrodes from within an electrode set implanted in a patient that enable delivery of desirable neurostimulation therapy by an implantable medical device. The programmer executes an electrode combination search algorithm to select combinations of electrodes to test in a non-random order. According to algorithms consistent with the invention, the programmer may first identify a position of a first cathode for subsequent combinations, and then select electrodes from the set to test with the first cathode as anodes or additional cathodes based on the proximity of the electrodes to the first cathode. The programmer may store information for each combination tested, and the information may facilitate the identification of desirable electrode combinations by the clinician. The clinician may create neurostimulation therapy programs that include identified desirable program combinations.
    Type: Grant
    Filed: April 25, 2003
    Date of Patent: December 9, 2008
    Assignee: Medtronic, Inc.
    Inventors: Michael T. Lee, Steven M. Goetz, Nathan A. Torgerson
  • Publication number: 20080103557
    Abstract: Storable implantable medical device assembly and container for an implantable device having a charging sub-assembly. The implantable medical device has therapeutic componentry and a rechargeable power source operatively coupled to the therapeutic componentry. The charging sub-assembly having an electro-chemical power source, such as a battery, and a charging circuit operatively coupled to the electro-chemical power source. The implantable medical device and the charging sub-assembly are co-located within the container. The charging circuit of the charging sub-assembly is operatively coupled to the chargeable power source within the container to charge the rechargeable power source while the implantable medical device remains in the container. The charging sub-assembly may use inductive coupling to charge the implantable device mimicking implantable device charging following implantation.
    Type: Application
    Filed: October 31, 2006
    Publication date: May 1, 2008
    Inventors: Timothy J. Davis, Alan Robert Helfinstine, Boysie R. Morgan, David P. Olson, Todd V. Smith, Nathan A. Torgerson, Leroy L. Perz
  • Publication number: 20080103552
    Abstract: Method, controller and system for an implantable medical device having a plurality of electrodes, the implantable medical device capable of delivering therapeutic stimulation to a patient, comprising a control module, a user interface operatively coupled to the control module, the user interface providing control of the control module by a medical professional or other user, and an electrode interface operatively coupled between the plurality of electrodes and the control module. The control module uses the electrode interface to obtain a plurality of measurements of impedance values for a plurality of selected pairs of individual ones of the plurality of electrodes. The control module determines a prescriptive analysis using the plurality of measurements of impedance values of the selected pairs of individual ones of the plurality of electrodes comparative to a range, and the user interface displays the prescriptive analysis.
    Type: Application
    Filed: October 31, 2006
    Publication date: May 1, 2008
    Inventors: Steven M. Goetz, Todd V. Smith, Nathan A. Torgerson, Warren W. Ball
  • Publication number: 20070255347
    Abstract: The disclosure is directed to techniques for delivering electrical stimulation for patient notification. An implantable medical device (IMD) may deliver patient notification stimulation via one or more device site electrodes, e.g., electrodes located proximate to an implant site for the IMD, configured as cathodes. Anodes for delivery the patient notification stimulation may be located in an electrode array that is provided by one or more leads and located distally from the implant site, e.g., an electrode array located at one or more target sites for delivery of stimulation therapy. In some embodiments, the IMD may inhibit the patient notification stimulation for a period in response to input from the patient, and then resume the stimulation at the end of the period. In this manner, the notification stimulation may be “snoozed” like an alarm clock. When the stimulation resumes, it may be different, e.g., more urgent, then prior to inhibition.
    Type: Application
    Filed: October 30, 2006
    Publication date: November 1, 2007
    Applicant: Medtronic, Inc.
    Inventors: Nathan A. Torgerson, William J. Marks
  • Publication number: 20070255350
    Abstract: System for transcutaneous energy transfer to an implantable medical device adapted to be implanted under a cutaneous boundary having a housing having a first surface adapted to face the cutaneous boundary, the first surface of the housing of the implantable medical device having a first mating element, therapeutic componentry and a secondary coil operatively coupled to the therapeutic componentry. An external power source has housing having a first surface adapted to be placed closest to the cutaneous boundary, the first surface of the housing of the external power source having a second mating element and a primary coil capable of inductively energizing the secondary coil when externally placed in proximity of the secondary coil. The first mating element and the second mating element are configured to tactilely align the external power source with the implantable medical device.
    Type: Application
    Filed: October 31, 2006
    Publication date: November 1, 2007
    Inventors: Nathan A. Torgerson, John E. Kast, Kevin J. Kelly, Todd P. Goblish
  • Publication number: 20070255349
    Abstract: System, method and antenna for an external power source for an implantable medical device having therapeutic componentry and a secondary coil operatively coupled to the therapeutic componentry. A housing has a first surface adapted to be placed closest to the secondary coil of the implantable medical device. A primary coil is operatively coupled to the external power and is capable of inductively energizing the secondary coil, the primary coil being wound forming generally concentric loops having an axis. The housing has a protrusion extending from the first surface.
    Type: Application
    Filed: April 28, 2006
    Publication date: November 1, 2007
    Applicant: Medtronic, Inc.
    Inventors: Nathan Torgerson, John Kast, Kevin Kelly, Todd Goblish
  • Publication number: 20070255339
    Abstract: The disclosure is directed to techniques for delivering electrical stimulation for patient notification. An implantable medical device (IMD) may deliver patient notification stimulation via one or more device site electrodes, e.g., electrodes located proximate to an implant site for the IMD, configured as cathodes. Anodes for delivery the patient notification stimulation may be located in an electrode array that is provided by one or more leads and located distally from the implant site, e.g., an electrode array located at one or more target sites for delivery of stimulation therapy. In some embodiments, the IMD may inhibit the patient notification stimulation for a period in response to input from the patient, and then resume the stimulation at the end of the period. In this manner, the notification stimulation may be “snoozed” like an alarm clock. When the stimulation resumes, it may be different, e.g., more urgent, then prior to inhibition.
    Type: Application
    Filed: April 28, 2006
    Publication date: November 1, 2007
    Applicant: Medtronic, Inc.
    Inventor: Nathan Torgerson
  • Publication number: 20070191907
    Abstract: Apparatus and method provide flexibility in generating a stimulation waveform to an electrode of an implantable medical device. The stimulation waveform comprises at least one stimulation pulse. The embodiment of the invention supports a generation of a stimulation pulse in which an amplitude and an electrical polarity of the stimulation pulse can be dynamically changed. The embodiment comprises a capacitor arrangement, a regulator and a switching array. The capacitor arrangement can be reconfigured with respect to an electrical reference through the switching array in order for the regulator to deliver the stimulation pulse to a pair of electrodes. In another embodiment, a plurality of stimulation waveforms are generated in which different stimulation waveforms are associated with different electrodes. With the embodiment, a plurality of regulators are connected and reconfigured to the capacitor arrangement in order that the different stimulation waveforms are generated by different regulators.
    Type: Application
    Filed: January 3, 2007
    Publication date: August 16, 2007
    Inventors: Marc Stein, Nathan Torgerson, Robert Leinders, Todd Goblish, Todd Heathershaw, John Rodriguez
  • Publication number: 20070123953
    Abstract: A programmer allows a clinician to identify desirable combinations of electrodes from within an electrode set implanted in a patient that enable delivery of desirable neurostimulation therapy by an implantable medical device. The clinician may create neurostimulation therapy programs that include identified desirable electrode combinations. In some embodiments, the clinician may use the programmer to select a program, such as a program identified during a neurostimulation programming session, and direct the programmer to replicate the selected program. The programmer may change one or more parameters of the selected program, such as pulse amplitude or duty cycle, when generating the copy of the selected program.
    Type: Application
    Filed: January 26, 2007
    Publication date: May 31, 2007
    Applicant: Medtronic, Inc.
    Inventors: Michael Lee, Steven Goetz, Nathan Torgerson