Patents by Inventor Nathan Craig

Nathan Craig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11205783
    Abstract: Corrosion-resistant oxide films for use with proton exchange membrane fuel cells are described. Bipolar plates of proton exchange membrane fuel cells are subject to highly-acidic environments that can degrade the bulk material and associated properties of the bipolar plate leading to reduced proton exchange membrane fuel cell lifetimes. Materials, structures, and techniques for increasing the corrosion resistance of bipolar plates are disclosed. Such materials include substrates having a surface portion, which includes an Fe2O3 oxide layer having (110), (012), or (100) Fe2O3 surface facets configured to impart corrosion-resistance properties to the substrate.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: December 21, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Soo Kim, Mordechai Kornbluth, Jonathan Mailoa, Georgy Samsonidze, Lei Cheng, Sondra Hellstrom, Boris Kozinsky, Nathan Craig
  • Publication number: 20210359310
    Abstract: A fuel cell stack includes a first end region, a second end region, and a middle region. At least one of a first number of fuel cell units in the first end region is a first fuel cell unit including a membrane electrode assembly (MEA) with a first catalyst material on either or both an anode and a cathode of the first fuel cell unit. At least one of a second number of fuel cell units in the second end region is a second fuel cell unit including an MEA with a second catalyst material on either or both an anode and a cathode of the first fuel cell unit. The middle region is situated between the first and the second end region. At least one of a third number of fuel cell units in the middle region is a third fuel cell unit including an MEA with a third catalyst material on either or both an anode and a cathode of the first fuel cell unit. At least one of the first, the second, and the third catalyst material are different.
    Type: Application
    Filed: May 12, 2020
    Publication date: November 18, 2021
    Inventors: Soo KIM, Jonathan MAILOA, Ulrich BERNER, Nathan CRAIG, Charles TUFFILE
  • Patent number: 11148786
    Abstract: A movable ballast system for an aircraft includes first and second ballast docks secured to the aircraft. The first ballast dock includes a first housing and a first ballast tray and a first stop plate secured within the first housing. The first ballast tray includes a plurality of channels. The second ballast dock is positioned aft of a CG of the aircraft and includes a second housing and a second ballast tray and a second stop plate secured within the second housing. The second ballast tray includes a plurality of channels. The movable ballast system includes a plurality of movable ballasts, each movable ballast of the plurality of movable ballasts being configured to fit within at least one channel of each of the plurality of channels of the first and second ballast trays.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: October 19, 2021
    Assignee: Bell Textron Inc.
    Inventors: Derek William Heard, Richard Theodore Perryman, Nathan Craig Clark, Joshua Andrew Emrich, Yann Lavallee, Ralph Michael Gannarelli
  • Publication number: 20210316843
    Abstract: A movable ballast system for an aircraft includes first and second ballast docks secured to the aircraft. The first ballast dock includes a first housing and a first ballast tray secured within the first housing. The first ballast tray includes a plurality of channels. The second ballast dock is positioned aft of a CG of the aircraft and includes a second housing and a second ballast tray secured within the second housing. The second ballast tray includes a plurality of channels. The movable ballast system includes a plurality of movable ballasts, each movable ballast of the plurality of movable ballasts being configured to fit within at least one channel of each of the plurality of channels of the first and second ballast trays.
    Type: Application
    Filed: May 5, 2021
    Publication date: October 14, 2021
    Applicant: Bell Textron Inc.
    Inventors: Derek William HEARD, Richard Theodore PERRYMAN, Nathan Craig CLARK, Joshua Andrew EMRICH, Yann LAVALLEE, Ralph Michael GANNARELLI
  • Patent number: 11145875
    Abstract: A fuel cell first and second electrode catalyst layers and a polymer electrolyte membrane (PEM) situated therebetween. A graphene-based material coated onto a first and/or second surface of the first and/or second electrode catalyst layers. The graphene-based material has a number of defects including a number of quad-vacancy (QV) defects formed by a vacancy of four adjacent carbon atoms in the graphene-based material. The number of QV defects are configured to mitigate dissolution of the first and/or second catalyst materials through the first and/or second surface of the first and/or second electrode catalyst layers.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: October 12, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Soo Kim, Jonathan Mailoa, Mordechai Kornbluth, Yelena Gorlin, Georgy Samsonidze, Boris Kozinsky, Nathan Craig
  • Patent number: 11107141
    Abstract: Various methods and systems are disclosed for managing and facilitating bot-to-bot transactions, implemented with electronic operations and communications in connection with a bot interaction framework service. In an example, a transaction in a bot-to-bot communication session is established and conducted via the bot interaction framework service using a series of communication, trust, and functional attributes. The processing operations performed by the bot interaction framework service may include: receiving a request for a transaction, for a transaction to be conducted via a bot-to-bot communication session between the user bot and the service bot; identifying communication, trust, and functional attributes for the bot-to-bot communication session; transmitting the communication, trust, and functional attributes to the user bot; and conducting the bot-to-bot communication session based on the communication, trust, and functional attributes.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: August 31, 2021
    Assignee: Wells Fargo Bank, N.A.
    Inventors: Sadananda Kalappanahally Nagarajappa, Venu Andra, Nathan Matthew Comstock, Balinder Singh Mangat, Nathan Craig Bricklin
  • Patent number: 11059690
    Abstract: An automated method and system for stacking and loading wrapped or unwrapped facemasks into a carton in a facemask production line includes conveying individual wrapped facemasks in a continuous stream to a stacking location. At the stacking location, the facemasks are deposited into a vertical accumulator such that the facemasks are stacked in the accumulator. Upon reaching a predetermined fill level of facemasks in the accumulator, a bottom retainer in the accumulator is opened such that the stacked facemasks drop into a carton placed below the accumulator. Upon opening the bottom retainer, a mid-level retainer is actuated in the accumulator that captures facemasks that continue to be deposited into the accumulator at an intermediate height above the bottom retainer. The bottom retainer is closed after the stacked facemasks drop into the carton, and the mid-level retainer is then opened such that the facemasks captured by the mid-level retainer drop onto the bottom retainer.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: July 13, 2021
    Assignee: O&M Halyard, Inc.
    Inventors: David Lamar Harrington, Mark Thomas Pamperin, Nathan Craig Harris, Joseph P. Weber, Ajay Y. Houde
  • Publication number: 20210202956
    Abstract: A polyelemental catalyst structure. The structure includes a region formed of a first metal material, a first core region formed of a second metal material, and a second core region formed of a third metal material. The first core region has interfacial contact with the region. The second core region has interfacial contact with the first core region. The polyelemental catalyst structure includes platinum (Pt), a first metal MI, a second metal MII and a third metal MIII. The first metal MI is configured to enhance catalytic activity of Pt. The second metal MII is configured to enhance stability of the polyelemental catalyst structure. The third metal MIII is configured to enhance covalent bonding between Pt, the first metal MI, the second metal MII and/or the third metal MIII.
    Type: Application
    Filed: December 31, 2019
    Publication date: July 1, 2021
    Inventors: Soo KIM, Jonathan MAILOA, Nathan CRAIG, Charles TUFFILE
  • Publication number: 20210202975
    Abstract: A unit cell for a fuel cell stack including an anode catalyst layer separated by a polymer electrolyte membrane from a cathode catalyst layer, a first cell end plate separated by a first gas diffusion layer from the anode catalyst layer, and a second cell end plate separated by a second gas diffusion layer from the cathode catalyst layer, wherein the first cell end plate, the second cell end plate, or both include a matrix of electrically-conducting protrusions thereof.
    Type: Application
    Filed: December 31, 2019
    Publication date: July 1, 2021
    Inventors: Soo Kim, Nathan Craig, Nikhil Ravi, Jake Christensen
  • Publication number: 20210167421
    Abstract: A solid state electrolyte material including a decontaminated lithium conducting ceramic oxide material including a decontaminated surface thickness. The decontaminated surface thickness is less than or equal to 5 nm. The decontaminated surface thickness may be greater than or equal to 1 nm. The decontaminated lithium conducting ceramic oxide material may be selected from the group consisting of Li7La3Zr2O12 (LLZO), Li5La3Ta2O12 (LLTO), Li6La2CaTa2O12 (LLCTO), Li6La2ANb2O12 (A is Ca or Sr), Li1+xAlxGe2-x(PO4)3 (LAGP), Li14Al0.4(Ge2-xTix)1.6(PO4)3 (LAGTP), perovskite Li3xLa2/3-xTiO3 (LLTO), Li0.8La0.6Zr2(PO4)3 (LLZP), Li1+xTi2-xAlx(PO4)3 (LTAP), Li1+x+yTi2-xAlxSiy(PO4)3-y (LTASP), LiTixZr2-x(PO4)3 (LTZP), Li2Nd3TeSbO12 and mixtures thereof.
    Type: Application
    Filed: February 15, 2021
    Publication date: June 3, 2021
    Inventors: Saravanan KUPPAN, Katherine HARRY, Michael METZGER, Nathan CRAIG, Jake CHRISTENSEN
  • Publication number: 20210159515
    Abstract: Fuel cell alloy bipolar plates. The alloys may be used as a coating or bulk material. The alloys and metallic glasses may be particularly suitable for proton-exchange membrane fuel cells because of they may exhibit reduced weights and/or better corrosion resistance. The alloys may include any of the following AlxCuyTiz, AlxFeyNiz, AlxMnyNiz, AlxNiyTiz, CuxFeyTiz, CuxNiyTiz, AlxFeySiz, AlxMnySiz, AlxNiySiz, NixSiyTiz, and CxFeySiz. The alloys or metallic glass may be doped with various dopants to improve glass forming ability, mechanical strength, ductility, electrical or thermal conductivities, hydrophobicity, and/or corrosion resistance.
    Type: Application
    Filed: November 25, 2019
    Publication date: May 27, 2021
    Inventors: Soo Kim, Jonathan Mailoa, Lei Cheng, Nathan Craig
  • Publication number: 20210159528
    Abstract: A fuel cell membrane electrode assembly including a polymer electrolyte membrane (PEM) and first and second electrodes. The PEM is situated between the first and second electrodes. The first electrode includes a first catalyst material layer including a first catalyst material and having first and second surfaces. The first electrode includes first and second material layers adjacent to the first and second surfaces, respectively, of the first catalyst material. The first material layer faces away from the PEM and the second material layer faces the PEM. The first material layer comprises a graphene-based material layer having a number of defects configured to mitigate dissolution of the first catalyst material through the first material layer.
    Type: Application
    Filed: November 25, 2019
    Publication date: May 27, 2021
    Inventors: Soo KIM, Jonathan MAILOA, Timothy SCHULTZ, Nathan CRAIG, Uma KRISHNAMOORTHY, Jake CHRISTENSEN
  • Patent number: 11001373
    Abstract: A movable ballast system for an aircraft includes first and second ballast docks secured to the aircraft. The first ballast dock includes a first housing and a first ballast tray secured within the first housing. The first ballast tray includes a plurality of channels. The second ballast dock is positioned aft of a CG of the aircraft and includes a second housing and a second ballast tray secured within the second housing. The second ballast tray includes a plurality of channels. The movable ballast system includes a plurality of movable ballasts, each movable ballast of the plurality of movable ballasts being configured to fit within at least one channel of each of the plurality of channels of the first and second ballast trays.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: May 11, 2021
    Assignee: Bell Textron Inc.
    Inventors: Derek William Heard, Richard Theodore Perryman, Nathan Craig Clark, Joshua Andrew Emrich, Yann Lavallee, Ralph Michael Gannarelli
  • Publication number: 20210135249
    Abstract: A fuel cell catalyst system includes a catalyst and a catalyst support material binding the catalyst and including an anticorrosive, conductive material having oxygen vacancies and a formula (I): MgTi2O5-???(I), where ? is any number between 0 and 3 optionally including a fractional part denoting the oxygen vacancies, the material having an electronic conductivity of about 2-10 S/m at room temperature in an ambient environment.
    Type: Application
    Filed: November 6, 2019
    Publication date: May 6, 2021
    Inventors: Soo KIM, Lei CHENG, Jonathan MAILOA, Mordechai KORNBLUTH, Nathan CRAIG, Dawei ZHANG
  • Publication number: 20210131610
    Abstract: A hydrogen gas storage tank includes a body including a steel bulk region and a passivating metal oxide layer adjacent to the steel bulk region, the oxide layer comprising a number of metal oxide molecules, all having a morphology, wherein at least about 51 wt. % of the number of metal oxide molecules are Fe2O3 molecules having morphologies of (012), (001), and/or (110) surface facets such that the oxide layer is configured to lower hydrogen adsorption into the steel bulk region by at least 25% compared to a steel bulk region free from the passivating metal oxide layer.
    Type: Application
    Filed: November 6, 2019
    Publication date: May 6, 2021
    Inventors: Soo KIM, Jonathan MAILOA, Anika MARUSCZYK, Matthias KUNTZ, Friedrich MUEHLEDER, Nathan CRAIG
  • Publication number: 20210135252
    Abstract: A fuel cell bipolar plate (BPP) includes a metal substrate having a bulk portion and a surface portion comprising an anticorrosive, conductive material having oxygen vacancies and a formula (I): MgTi2O5-???(I), where ? is any number between 0 and 3 optionally including a fractional part denoting the oxygen vacancies, the material having an electronic conductivity of about 2-10 S/m at room temperature in an ambient environment.
    Type: Application
    Filed: November 6, 2019
    Publication date: May 6, 2021
    Inventors: Lei CHENG, Jonathan MAILOA, Soo KIM, Mordechai KORNBLUTH, Dawei ZHANG, Nathan CRAIG
  • Patent number: 10988391
    Abstract: A desalination battery includes a container configured to contain a saline water solution having a first concentration c1 of dissolved salts; first and second intercalation hosts, arranged to be in fluid communication with the saline water solution, at least the first intercalation host including expanded graphite having a plurality of graphene layers with an interlayer spacing between the graphene layers in z-direction greater than 0.34 nm; and a power source configured to supply electric current to the first and second intercalation hosts such that the first and second intercalation hosts reversibly store and release cations and anions from the saline water solution located between the plurality of graphene layers to generate a fresh water solution having a second concentration c2 of dissolved salts and a brine solution having a third concentration c3 of dissolved salts within the container such that c3>c1>c2.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: April 27, 2021
    Assignee: ROBERT BOSCH GmbH
    Inventors: Soo Kim, Jonathan Mailoa, Mordechai Kornbluth, Georgy Samsonidze, Michael Metzger, Saravanan Kuppan, Sondra Hellstrom, Boris Kozinsky, Nathan Craig
  • Publication number: 20210104752
    Abstract: A proton exchange membrane fuel cell (PEMFC). The PEMFC includes a catalyst support material formed of a metal material reactive with H3O+, HF and/or SO? to form reaction products in which the metal material accounts for a stable molar percentage of the reaction products. The PEMFC further includes a catalyst supported on the catalyst support material.
    Type: Application
    Filed: October 2, 2019
    Publication date: April 8, 2021
    Inventors: Soo KIM, Jonathan MAILOA, Mordechai KORNBLUTH, Lei CHENG, Georgy SAMSONIDZE, Boris KOZINSKY, Nathan CRAIG
  • Patent number: 10961563
    Abstract: A method of fabricating a nanoscale topography system for inducing unfolding of a DNA molecule for sequencing includes providing a substrate and creating trench walls on the substrate which define a trench therebetween. The method further includes depositing a layer of a block copolymer (BCP) in the trench and forming cylindrical domains by self-assembly of the BCP between the trench walls, removing a first portion of the cylindrical domains to create a vacant region in the trench, and depositing a subsequent layer of the BCP in the vacant region and forming spherical domains by self-assembly of the BCP between the trench walls adjacent a second portion of the cylindrical domains. The spherical domains form staggered post structures for unfolding the DNA molecule and the cylindrical domains form parallel channel structures for entry of the DNA molecule for sequencing.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: March 30, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Karim Gadelrab, Giovanna Bucci, Nathan Craig, Christopher Johnson, Nadezda Fomina, Young Shik Shin
  • Publication number: 20210064061
    Abstract: A method of adjusting a center of gravity (CG) of an aircraft includes: inputting at least one load parameter into a flight computer, determining, via a processer of the flight computer, the CG of the aircraft. Responsive to a determination by the processor that the CG is outside of a CG envelope, moving at least a first movable ballast of a plurality of movable ballasts from a first ballast dock to a second ballast dock to move the CG toward the CG envelope. Each of the first and second ballast docks may include a housing and a first ballast tray secured within the housing and comprising a plurality of channels.
    Type: Application
    Filed: August 29, 2019
    Publication date: March 4, 2021
    Applicant: Bell Textron Inc.
    Inventors: Derek William HEARD, Richard Theodore PERRYMAN, Nathan Craig CLARK, Joshua Andrew EMRICH, Yann LAVALLEE, Ralph Michael GANNARELLI