Patents by Inventor Nathan G. Jones

Nathan G. Jones has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10807714
    Abstract: In some embodiments, systems, apparatuses and methods are provided herein that enable delivery of retail products. Some embodiments provide delivery systems comprising: a package support frame comprising first and second package supports, and a pivot coupler pivotably securing the first package support with the second package support; and a first release plate positioned across a separation between the first and second package supports, and comprising: a set of at least one angled locking grooves; a set of at least one groove pins slidably positioned within a respective one of the locking grooves; and a release tab configured to contact a surface and cause an unlocking of the first release plate such that the release plate moves with the locking grooves sliding along respective groove pins such that the base of the package support pivots away from the base of the second package support enlarging a package release aperture.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: October 20, 2020
    Assignee: Walmart Apollo, LLC
    Inventors: Michael D. Atchley, John P. Thompson, Eric A. Letson, Robert C. Taylor, Nathan G. Jones
  • Publication number: 20200260618
    Abstract: Provided is an improved overvoltage protection element. The overvoltage protection device comprises at least one ESD protection couple comprising discharge electrodes in a plane, a gap insulator between the discharge electrodes, an overvoltage protection element parallel to the planar discharge electrodes wherein the overvoltage protection element comprises a conductor and an secondary material. The overvoltage protection element also comprises a primary insulator layer between the discharge electrodes and overvoltage protection element.
    Type: Application
    Filed: April 27, 2020
    Publication date: August 13, 2020
    Inventors: Lonnie G. Jones, Iain D. Kinnon, John Bultitude, Nathan A. Reed, Jeffrey W. Bell, George Michael Theis
  • Publication number: 20200163260
    Abstract: Provided is an improved overvoltage protection element. The overvoltage protection device comprises at least one ESD protection couple comprising discharge electrodes in a plane, a gap insulator between the discharge electrodes, an overvoltage protection element parallel to the planar discharge electrodes wherein the overvoltage protection element comprises a conductor and an secondary material. The overvoltage protection element also comprises a primary insulator layer between the discharge electrodes and overvoltage protection element.
    Type: Application
    Filed: July 19, 2019
    Publication date: May 21, 2020
    Inventors: Lonnie G. Jones, Iain D. Kinnon, John Bultitude, Nathan A. Reed, Jeffrey W. Bell, George Michael Theis
  • Publication number: 20200028356
    Abstract: A protected electric circuit, and method of protecting a protected circuit is provided. The circuit comprises at least one sensitive device wherein the sensitive device operates at a device voltage and has a maximum voltage capability. At least one light emitting diode electrically connected with the sensitive device wherein the light emitting diode has a first trigger voltage wherein the first trigger voltage is above the device voltage and below the maximum voltage capability. When any said extraneous energy above the first trigger energy is experienced the light emitting diode emits photons thereby converting at least some of the extraneous energy to photon energy.
    Type: Application
    Filed: July 16, 2019
    Publication date: January 23, 2020
    Inventors: John Bultitude, Lonnie G. Jones, Iain D. Kinnon, Nathan A. Reed, Jeffrey W. Bell
  • Patent number: 10538327
    Abstract: In some embodiments, methods and systems of facilitating movement of product-containing pallets include at least one forklift unit configured to lift and move the product-containing pallets, at least one motorized transport unit configured to mechanically engage and disengage a respective forklift unit, and a central computer system in communication with the at least one motorized transport unit. The central computer system is configured to transmit at least one signal to the at least one motorized transport unit. The signal is configured to cause the at least one motorized transport unit to control the at least one forklift unit to move at least one of the product-containing pallets.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: January 21, 2020
    Assignee: Walmart Apollo, LLC
    Inventors: Donald R. High, Nathan G. Jones, Gregory A. Hicks
  • Patent number: 10535037
    Abstract: In some embodiments, systems, apparatuses and methods are provided herein useful to delivery packages using unmanned delivery aircrafts. Some embodiments include product delivery systems, comprising: a transceiver; a control circuit; a memory coupled to the control circuit and storing computer instructions that when executed by the control circuit cause the control circuit to perform the steps of: receive, from a customer, an authorization to deliver a product by an unmanned delivery aircraft; receive, from a portable user interface unit associated with the customer, global location information of a current location of the user interface unit and that designates a delivery location where the customer would like the product delivered; and initiate a delivery, by an unmanned delivery aircraft, of the product to the delivery location defined by the global location information received from the user interface unit.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: January 14, 2020
    Assignee: Walmart Apollo, LLC
    Inventors: Donald R. High, Nathan G. Jones, Chandrashekar Natarajan, John P. Thompson, Gregory A. Hicks
  • Patent number: 10520938
    Abstract: In some embodiments, unmanned aerial task systems are provided that comprise multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system coupled with the motor and configured to enable the respective UAVs to move themselves; and wherein a first UAV control circuit of a first UAV of the multiple UAVs is configured to identify a second UAV carrying a first tool system configured to perform a first function, cause a notification to be communicated to the second UAV directing the second UAV to transfer the first tool system to the first UAV, and direct a first propulsion system of the first UAV to couple with the first tool system being transferred from the second UAV.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: December 31, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Patent number: 10520953
    Abstract: In some embodiments, unmanned aerial task systems are provided that comprise multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system coupled with the motor and configured to enable the respective UAVs to move themselves; and wherein a first UAV control circuit of a first UAV of the multiple UAVs is configured to access power level data corresponding to each of the multiple UAVs, and select a second UAV of the multiple UAVs based at least in part on a power level of the second UAV relative to a threshold power level corresponding to a first task to be performed and a predicted power usage by the second UAV while utilizing a first tool system temporarily cooperated with the second UAV in performing the first task.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: December 31, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Patent number: 10514691
    Abstract: In some embodiments, unmanned task systems are provided that comprise multiple unmanned vehicles each comprising: a control circuit; a motor; and a propulsion system coupled with the motor and configured to enable the respective unmanned vehicles to move themselves; and wherein a first control circuit of a first unmanned vehicle of the multiple unmanned vehicles is configured to identify a second unmanned vehicle carrying a first tool system configured to perform a first function, cause a notification to be communicated to the second unmanned vehicle directing the second unmanned vehicle to transfer the first tool system to the first unmanned vehicle, and direct a first propulsion system of the first unmanned vehicle to couple with the first tool system being transferred from the second unmanned vehicle.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: December 24, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Patent number: 10507918
    Abstract: In some embodiments, unmanned aerial task systems are provided that include a plurality of unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; propulsion system; and a universal coupler configured to interchangeably couple with and decouple from one of multiple different tool systems each having different functions to be put into use while carried by a UAV, wherein a coupling system of the universal coupler is configured to secure a tool system with the UAV and enable a communication connection between a communication bus and the tool system, and wherein the multiple different tool systems comprise at least a package securing tool system configured to retain and enable transport of a package while being delivered, and a sensor tool system configured to sense a condition and communicate sensor data of the sensed condition to the UAV control circuit over the communication bus.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: December 17, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Patent number: 10501182
    Abstract: In some embodiments, systems, apparatuses and methods are provided to enhance delivery of packages and/or cargo through the use of unmanned delivery aircraft. In some embodiments, a portable unmanned delivery aircraft launch system is provided that comprises: a first portable launch pad system comprising: a package deck; an unmanned delivery aircraft deck secured with the package deck and positioned above and separated by a distance from the package deck; and multiple modular coupling structures fixed with a frame enabling temporary rigid coupling and decoupling between the first launch pad system and multiple additional portable launch pad systems.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: December 10, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Nathan G. Jones, Gregory A. Hicks, Donald R. High
  • Patent number: 10467376
    Abstract: Some embodiments provide a system to design an unmanned aircraft system (UAS) based on an intended task, comprising: UAS component database and a design control circuit configured to: obtain a first set of multiple task parameters corresponding to a requested task that the UAS is being designed to perform; identify at least one primary type of UAS component to be included in the UAS being designed; identify a first set of one or more secondary types of UAS components to support the primary type of UAS component while implementing the task; and provide a design plan of the designed UAS designed to be utilized to implement the task.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: November 5, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: John P. Thompson, Donald R. High, Nathan G. Jones
  • Patent number: 10420322
    Abstract: Systems, apparatuses, and methods are provided herein for providing aerial animal food delivery. In one embodiment, a system for providing aerial animal food delivery comprises: an unmanned aerial vehicle, an animal food container coupled to the unmanned aerial vehicle, the animal food container being configured to hold animal food during transport by the unmanned aerial vehicle, and a central computer system communicatively coupled to the unmanned aerial vehicle, the central computer system being configured to: instruct the unmanned aerial vehicle to travel to a service location at a service time with the animal food container and instruct a release of the animal food from the animal food container in an unpackaged form at the service location such that the animal food is accessible to and edible by one or more animals upon release.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: September 24, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Nathan G. Jones, Donald R. High
  • Patent number: 10423169
    Abstract: In some embodiments, unmanned aerial task systems are provided that comprise: multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system; and wherein data acquired through a first set of at least one of the multiple UAVs while performing a first set of at least one task is caused to be distributed to a second set of at least two of the multiple UAVs, and cause cooperative computational processing of the data through the UAV control circuits of the second set of UAVs and cooperatively identify based on the cooperative computational processing a second set of at least one task to be performed, and identify a set of at least two tool systems to be utilized by a third set of at least two of the multiple UAVs in cooperatively performing the second set of at least one task.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: September 24, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20190271988
    Abstract: In some embodiments, systems and methods are provided herein useful for delivering merchandise using autonomous ground vehicles (AGVs) linking to and unlinking from other AGVs. In some embodiments, the system includes a plurality of AGVs where each AGV has a storage area and couplers at each end of the AGV and a first linked orientation in which the AGVs are linked end to end in a predetermined sequence. The system further includes centralized control circuit configured to receive a plurality of merchandise orders for delivery, identify a geographic neighborhood having orders, identify AGVs for delivery in the neighborhood, instruct the AGVs to form the first linked orientation, and instruct navigation of the AGV chain to an initial detachment location in the neighborhood. The AGVs detach in the neighborhood, complete their individual deliveries, and navigate to a predetermined relinking location in the neighborhood.
    Type: Application
    Filed: February 22, 2019
    Publication date: September 5, 2019
    Inventors: Donald R. High, Robert L. Cantrell, Michael D. Atchley, Brian G. McHale, John J. O'Brien, Nathan G. Jones
  • Publication number: 20190248490
    Abstract: In some embodiments, systems, apparatuses and methods are provided to enhance delivery of packages and/or cargo through the use of unmanned delivery vehicle. In some embodiments, a mechanical package release system is provided that comprises: a package release hanger configured to couple with and suspend from an unmanned delivery vehicle; and one or more tension supports each configured to secure with a package and to releasably couple with the package release hanger wherein a decrease of at least a threshold amount of a force being applied by the weight of the package on the one or more tension supports induces a mechanical release of the coupling between the one or more tension supports and the package release hanger resulting in a release of the package from the unmanned delivery vehicle.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 15, 2019
    Inventors: Nathan G. Jones, Gregory A. Hicks, Donald R. High
  • Publication number: 20190248489
    Abstract: In some embodiments, systems, apparatuses and methods are provided to enhance delivery of packages. Some embodiments provide an unmanned delivery system comprising: a rotational drive shaft; a crane motor cooperated with the drive shaft that is rotated by the crane motor; a first crane system with a first cord fixed with the first crane system, wherein the first crane system is configured to cooperate with the drive shaft to control the first crane system in controlling the spooling and retraction of the first cord; a control circuit coupled with the crane motor; and a stop switch electrically coupled with the control circuit and positioned to be contacted by a package release hanger secured with the first cord when the first cord is retracted to a first threshold; wherein the control circuit is configured to stop the crane motor in response to receiving a signal from the stop switch.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 15, 2019
    Inventors: Nathan G. Jones, Gregory A. Hicks, Donald R. High
  • Publication number: 20190241266
    Abstract: In some embodiments, systems and methods are provided to enable package delivery and interaction with customers. Some embodiments comprise unmanned aircraft system (UAS), comprising: a crane system comprising a first spool system and a crane motor, the first spool system comprises a first cord that is extended and retracted; a retractable interface system cooperated with the first cord; a package holder configured to hold a first package to be delivered by the UAS at a delivery location; a control circuit coupled with the crane motor to control the crane motor, and to activate the crane motor to extend the first cord and lower the retractable interface system while the UAS is maintained in flight at least at a threshold height; wherein the retractable interface system comprises an input interface to receive input from a customer at the delivery location.
    Type: Application
    Filed: April 11, 2019
    Publication date: August 8, 2019
    Inventors: John P. Thompson, Donald R. High, Nathan G. Jones, David C. Winkle, Brian G. McHale
  • Publication number: 20190244531
    Abstract: In some embodiments, apparatuses and methods are provided herein useful to manage a last mile delivery of an unmanned vehicle (UV). In some embodiments, there is provided a system for managing a last mile delivery of a UV including a scout UV configured to perform a dry run delivery to a delivery destination comprising: a differential global positioning satellite (DGPS), an altimeter sensor, a distance sensor, a wind sensor, and a scout control circuit configured to: determine positional location coordinates of the scout UV, determine perimeter coordinates of obstacles along one or more last mile routes, determine a trail of positional location coordinates, provide the trail of positional location coordinates to a delivery UV; and a delivery UV configured to follow the trail of positional location coordinates during an actual delivery of one or more retail products to a delivery destination.
    Type: Application
    Filed: January 29, 2019
    Publication date: August 8, 2019
    Inventors: Nathan G. Jones, Robert L. Cantrell, Donald R. High, Todd D. Mattingly
  • Publication number: 20190227541
    Abstract: In some embodiments, unmanned aerial task systems are provided that comprise multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system coupled with the motor and configured to enable the respective UAVs to move themselves; and wherein a first UAV control circuit of a first UAV of the multiple UAVs is configured to identify a second UAV carrying a first tool system configured to perform a first function, cause a notification to be communicated to the second UAV directing the second UAV to transfer the first tool system to the first UAV, and direct a first propulsion system of the first UAV to couple with the first tool system being transferred from the second UAV.
    Type: Application
    Filed: April 2, 2019
    Publication date: July 25, 2019
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor