Patents by Inventor Navdeep Jaitly

Navdeep Jaitly has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11182566
    Abstract: A computer-implemented method for training a neural network that is configured to generate a score distribution over a set of multiple output positions. The neural network is configured to process a network input to generate a respective score distribution for each of a plurality of output positions including a respective score for each token in a predetermined set of tokens that includes n-grams of multiple different sizes. Example methods described herein provide trained neural networks which produce results with improved accuracy compared to the state of the art, e.g. translations that are more accurate compared to the state of the art, or more accurate speech recognition compared to the state of the art.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: November 23, 2021
    Assignee: Google LLC
    Inventors: Navdeep Jaitly, Yu Zhang, Quoc V. Le, William Chan
  • Patent number: 11151985
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media for speech recognition. One method includes obtaining an input acoustic sequence, the input acoustic sequence representing an utterance, and the input acoustic sequence comprising a respective acoustic feature representation at each of a first number of time steps, processing the input acoustic sequence using a first neural network to convert the input acoustic sequence into an alternative representation for the input acoustic sequence, processing the alternative representation for the input acoustic sequence using an attention-based Recurrent Neural Network (RNN) to generate, for each position in an output sequence order, a set of substring scores that includes a respective substring score for each substring in a set of substrings; and generating a sequence of substrings that represent a transcription of the utterance.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: October 19, 2021
    Assignee: Google LLC
    Inventors: William Chan, Navdeep Jaitly, Quoc V. Le, Oriol Vinyals, Noam M. Shazeer
  • Patent number: 11145293
    Abstract: Methods, systems, and apparatus, including computer-readable media, for performing speech recognition using sequence-to-sequence models. An automated speech recognition (ASR) system receives audio data for an utterance and provides features indicative of acoustic characteristics of the utterance as input to an encoder. The system processes an output of the encoder using an attender to generate a context vector and generates speech recognition scores using the context vector and a decoder trained using a training process that selects at least one input to the decoder with a predetermined probability. An input to the decoder during training is selected between input data based on a known value for an element in a training example, and input data based on an output of the decoder for the element in the training example. A transcription is generated for the utterance using word elements selected based on the speech recognition scores. The transcription is provided as an output of the ASR system.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: October 12, 2021
    Assignee: Google LLC
    Inventors: Rohit Prakash Prabhavalkar, Zhifeng Chen, Bo Li, Chung-Cheng Chiu, Kanury Kanishka Rao, Yonghui Wu, Ron J. Weiss, Navdeep Jaitly, Michiel A. U. Bacchiani, Tara N. Sainath, Jan Kazimierz Chorowski, Anjuli Patricia Kannan, Ekaterina Gonina, Patrick An Phu Nguyen
  • Publication number: 20210295858
    Abstract: Methods, systems, and computer program products for generating, from an input character sequence, an output sequence of audio data representing the input character sequence. The output sequence of audio data includes a respective audio output sample for each of a number of time steps. One example method includes, for each of the time steps: generating a mel-frequency spectrogram for the time step by processing a representation of a respective portion of the input character sequence using a decoder neural network; generating a probability distribution over a plurality of possible audio output samples for the time step by processing the mel-frequency spectrogram for the time step using a vocoder neural network; and selecting the audio output sample for the time step from the possible audio output samples in accordance with the probability distribution.
    Type: Application
    Filed: April 5, 2021
    Publication date: September 23, 2021
    Inventors: Yonghui Wu, Jonathan Shen, Ruoming Pang, Ron J. Weiss, Michael Schuster, Navdeep Jaitly, Zongheng Yang, Zhifeng Chen, Yu Zhang, Yuxuan Wang, Russell John Wyatt Skerry-Ryan, Ryan M. Rifkin, Ioannis Agiomyrgiannakis
  • Patent number: 11107457
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating speech from text. One of the systems includes one or more computers and one or more storage devices storing instructions that when executed by one or more computers cause the one or more computers to implement: a sequence-to-sequence recurrent neural network configured to: receive a sequence of characters in a particular natural language, and process the sequence of characters to generate a spectrogram of a verbal utterance of the sequence of characters in the particular natural language; and a subsystem configured to: receive the sequence of characters in the particular natural language, and provide the sequence of characters as input to the sequence-to-sequence recurrent neural network to obtain as output the spectrogram of the verbal utterance of the sequence of characters in the particular natural language.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: August 31, 2021
    Assignee: Google LLC
    Inventors: Samuel Bengio, Yuxuan Wang, Zongheng Yang, Zhifeng Chen, Yonghui Wu, Ioannis Agiomyrgiannakis, Ron J. Weiss, Navdeep Jaitly, Ryan M. Rifkin, Robert Andrew James Clark, Quoc V. Le, Russell J. Ryan, Ying Xiao
  • Patent number: 11080599
    Abstract: A speech recognition neural network system includes an encoder neural network and a decoder neural network. The encoder neural network generates an encoded sequence from an input acoustic sequence that represents an utterance. The input acoustic sequence includes a respective acoustic feature representation at each of a plurality of input time steps, the encoded sequence includes a respective encoded representation at each of a plurality of time reduced time steps, and the number of time reduced time steps is less than the number of input time steps. The encoder neural network includes a time reduction subnetwork, a convolutional LSTM subnetwork, and a network in network subnetwork. The decoder neural network receives the encoded sequence and processes the encoded sequence to generate, for each position in an output sequence order, a set of sub string scores that includes a respective sub string score for each substring in a set of substrings.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: August 3, 2021
    Assignee: Google LLC
    Inventors: Navdeep Jaitly, Yu Zhang, William Chan
  • Patent number: 11003993
    Abstract: This document generally describes a neural network training system, including one or more computers, that trains a recurrent neural network (RNN) to receive an input, e.g., an input sequence, and to generate a sequence of outputs from the input sequence. In some implementations, training can include, for each position after an initial position in a training target sequence, selecting a preceding output of the RNN to provide as input to the RNN at the position, including determining whether to select as the preceding output (i) a true output in a preceding position in the output order or (ii) a value derived from an output of the RNN for the preceding position in an output order generated in accordance with current values of the parameters of the recurrent neural network.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: May 11, 2021
    Assignee: Google LLC
    Inventors: Samy Bengio, Oriol Vinyals, Navdeep Jaitly, Noam M. Shazeer
  • Patent number: 10971170
    Abstract: Methods, systems, and computer program products for generating, from an input character sequence, an output sequence of audio data representing the input character sequence. The output sequence of audio data includes a respective audio output sample for each of a number of time steps. One example method includes, for each of the time steps: generating a mel-frequency spectrogram for the time step by processing a representation of a respective portion of the input character sequence using a decoder neural network; generating a probability distribution over a plurality of possible audio output samples for the time step by processing the mel-frequency spectrogram for the time step using a vocoder neural network; and selecting the audio output sample for the time step from the possible audio output samples in accordance with the probability distribution.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: April 6, 2021
    Assignee: Google LLC
    Inventors: Yonghui Wu, Jonathan Shen, Ruoming Pang, Ron J. Weiss, Michael Schuster, Navdeep Jaitly, Zongheng Yang, Zhifeng Chen, Yu Zhang, Yuxuan Wang, Russell John Wyatt Skerry-Ryan, Ryan M. Rifkin, Ioannis Agiomyrgiannakis
  • Publication number: 20210090724
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media for speech recognition. One method includes obtaining an input acoustic sequence, the input acoustic sequence representing one or more utterances; processing the input acoustic sequence using a speech recognition model to generate a transcription of the input acoustic sequence, wherein the speech recognition model comprises a domain-specific language model; and providing the generated transcription of the input acoustic sequence as input to a domain-specific predictive model to generate structured text content that is derived from the transcription of the input acoustic sequence.
    Type: Application
    Filed: December 4, 2020
    Publication date: March 25, 2021
    Inventors: Christopher S. Co, Navdeep Jaitly, Lily Hao Yi Peng, Katherine Irene Chou, Ananth Sankar
  • Patent number: 10860685
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media for speech recognition. One method includes obtaining an input acoustic sequence, the input acoustic sequence representing one or more utterances; processing the input acoustic sequence using a speech recognition model to generate a transcription of the input acoustic sequence, wherein the speech recognition model comprises a domain-specific language model; and providing the generated transcription of the input acoustic sequence as input to a domain-specific predictive model to generate structured text content that is derived from the transcription of the input acoustic sequence.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: December 8, 2020
    Assignee: Google LLC
    Inventors: Christopher S. Co, Navdeep Jaitly, Lily Hao Yi Peng, Katherine Irene Chou, Ananth Sankar
  • Publication number: 20200251099
    Abstract: A system can be configured to perform tasks such as converting recorded speech to a sequence of phonemes that represent the speech, converting an input sequence of graphemes into a target sequence of phonemes, translating an input sequence of words in one language into a corresponding sequence of words in another language, or predicting a target sequence of words that follow an input sequence of words in a language (e.g., a language model). In a speech recognizer, the RNN system may be used to convert speech to a target sequence of phonemes in real-time so that a transcription of the speech can be generated and presented to a user, even before the user has completed uttering the entire speech input.
    Type: Application
    Filed: February 4, 2020
    Publication date: August 6, 2020
    Inventors: Navdeep Jaitly, Quoc V. Le, Oriol Vinyals, Samuel Bengio, Ilya Sutskever
  • Patent number: 10656605
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating a target sequence from a source sequence. In one aspect, the system includes a recurrent neural network configured to, at each time step, receive am input for the time step and process the input to generate a progress score and a set of output scores; and a subsystem configured to, at each time step, generate the recurrent neural network input and provide the input to the recurrent neural network; determine, from the progress score, whether or not to emit a new output at the time step; and, in response to determining to emit a new output, select an output using the output scores and emit the selected output as the output at a next position in the output order.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: May 19, 2020
    Assignee: Google LLC
    Inventors: Chung-Cheng Chiu, Navdeep Jaitly, Ilya Sutskever, Yuping Luo
  • Publication number: 20200151544
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating a target sequence from a source sequence. In one aspect, the system includes a recurrent neural network configured to, at each time step, receive an input for the time step and process the input to generate a progress score and a set of output scores; and a subsystem configured to, at each time step, generate the recurrent neural network input and provide the input to the recurrent neural network; determine, from the progress score, whether or not to emit a new output at the time step; and, in response to determining to emit a new output, select an output using the output scores and emit the selected output as the output at a next position in the output order.
    Type: Application
    Filed: May 3, 2018
    Publication date: May 14, 2020
    Inventors: Chung-Cheng Chiu, Navdeep Jaitly, John Dieterich Lawson, George Jay Tucker
  • Patent number: 10635972
    Abstract: Methods and systems for learning long-term dependencies in recurrent neural networks. In one aspect, a neural network system is configured to receive a respective input for each of a plurality of time steps and to generate a respective output for each time step, the neural network system comprising one or more recurrent neural network layers, wherein, for each of the time steps, each of the recurrent neural network layers is configured to receive a layer input for the time step; apply an input weight matrix to the layer input to generate a first output; apply a recurrent weight matrix to a hidden state of the recurrent neural network layer for the time step to generate a second output; combine the first and second outputs to generate a combined output; and apply a rectified linear unit activation function to the combined output to generate a layer output for the time step.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: April 28, 2020
    Assignee: Google LLC
    Inventors: Quoc V. Le, Geoffrey E. Hinton, Navdeep Jaitly
  • Publication number: 20200118554
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media for speech recognition. One method includes obtaining an input acoustic sequence, the input acoustic sequence representing an utterance, and the input acoustic sequence comprising a respective acoustic feature representation at each of a first number of time steps, processing the input acoustic sequence using a first neural network to convert the input acoustic sequence into an alternative representation for the input acoustic sequence, processing the alternative representation for the input acoustic sequence using an attention-based Recurrent Neural Network (RNN) to generate, for each position in an output sequence order, a set of substring scores that includes a respective substring score for each substring in a set of substrings; and generating a sequence of substrings that represent a transcription of the utterance.
    Type: Application
    Filed: December 13, 2019
    Publication date: April 16, 2020
    Applicant: Google LLC
    Inventors: William Chan, Navdeep Jaitly, Quoc V. Le, Oriol Vinyals, Noam M. Shazeer
  • Publication number: 20200098350
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating speech from text. One of the systems includes one or more computers and one or more storage devices storing instructions that when executed by one or more computers cause the one or more computers to implement: a sequence-to-sequence recurrent neural network configured to: receive a sequence of characters in a particular natural language, and process the sequence of characters to generate a spectrogram of a verbal utterance of the sequence of characters in the particular natural language; and a subsystem configured to: receive the sequence of characters in the particular natural language, and provide the sequence of characters as input to the sequence-to-sequence recurrent neural network to obtain as output the spectrogram of the verbal utterance of the sequence of characters in the particular natural language.
    Type: Application
    Filed: November 26, 2019
    Publication date: March 26, 2020
    Inventors: Samuel Bengio, Yuxuan Wang, Zongheng Yang, Zhifeng Chen, Yonghui Wu, Ioannis Agiomyrgiannakis, Ron J. Weiss, Navdeep Jaitly, Ryan M. Rifkin, Robert Andrew James Clark, Quoc V. Le, Russell J. Ryan, Ying Xiao
  • Publication number: 20200090044
    Abstract: A speech recognition neural network system includes an encoder neural network and a decoder neural network. The encoder neural network generates an encoded sequence from an input acoustic sequence that represents an utterance. The input acoustic sequence includes a respective acoustic feature representation at each of a plurality of input time steps, the encoded sequence includes a respective encoded representation at each of a plurality of time reduced time steps, and the number of time reduced time steps is less than the number of input time steps. The encoder neural network includes a time reduction subnetwork, a convolutional LSTM subnetwork, and a network in network subnetwork. The decoder neural network receives the encoded sequence and processes the encoded sequence to generate, for each position in an output sequence order, a set of sub string scores that includes a respective sub string score for each substring in a set of substrings.
    Type: Application
    Filed: November 22, 2019
    Publication date: March 19, 2020
    Inventors: Navdeep Jaitly, Yu Zhang, William Chan
  • Patent number: 10573293
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating speech from text. One of the systems includes one or more computers and one or more storage devices storing instructions that when executed by one or more computers cause the one or more computers to implement: a sequence-to-sequence recurrent neural network configured to: receive a sequence of characters in a particular natural language, and process the sequence of characters to generate a spectrogram of a verbal utterance of the sequence of characters in the particular natural language; and a subsystem configured to: receive the sequence of characters in the particular natural language, and provide the sequence of characters as input to the sequence-to-sequence recurrent neural network to obtain as output the spectrogram of the verbal utterance of the sequence of characters in the particular natural language.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: February 25, 2020
    Assignee: Google LLC
    Inventors: Samuel Bengio, Yuxuan Wang, Zongheng Yang, Zhifeng Chen, Yonghui Wu, Ioannis Agiomyrgiannakis, Ron J. Weiss, Navdeep Jaitly, Ryan M. Rifkin, Robert Andrew James Clark, Quoc V. Le, Russell J. Ryan, Ying Xiao
  • Patent number: 10559300
    Abstract: A system can be configured to perform tasks such as converting recorded speech to a sequence of phonemes that represent the speech, converting an input sequence of graphemes into a target sequence of phonemes, translating an input sequence of words in one language into a corresponding sequence of words in another language, or predicting a target sequence of words that follow an input sequence of words in a language (e.g., a language model). In a speech recognizer, the RNN system may be used to convert speech to a target sequence of phonemes in real-time so that a transcription of the speech can be generated and presented to a user, even before the user has completed uttering the entire speech input.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: February 11, 2020
    Assignee: Google LLC
    Inventors: Navdeep Jaitly, Quoc V. Le, Oriol Vinyals, Samuel Bengio, Ilya Sutskever
  • Publication number: 20200026765
    Abstract: A computer-implemented method for training a neural network that is configured to generate a score distribution over a set of multiple output positions. The neural network is configured to process a network input to generate a respective score distribution for each of a plurality of output positions including a respective score for each token in a predetermined set of tokens that includes n-grams of multiple different sizes. Example methods described herein provide trained neural networks which produce results with improved accuracy compared to the state of the art, e.g. translations that are more accurate compared to the state of the art, or more accurate speech recognition compared to the state of the art.
    Type: Application
    Filed: October 3, 2017
    Publication date: January 23, 2020
    Inventors: Navdeep Jaitly, Yu Zhang, Quoc V. Le, William Chan