Patents by Inventor Navpreet S. Grewal

Navpreet S. Grewal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10605781
    Abstract: Methods for measuring out-of-plane wrinkles in composite laminates are described. An example method includes scanning a first side of a composite laminate with an ultrasonic transducer. The method further includes locating an out-of-plane wrinkle of the composite laminate on a B-scan ultrasound image generated in response to the scanning of the first side of the composite laminate. The method further includes associating a first marker with the B-scan ultrasound image, the first marker determined based on a location of a crest of the out-of-plane wrinkle on the B-scan ultrasound image. The method further includes associating a second marker with the B-scan ultrasound image, the second marker determined based on a location of a trough focal point of the out-of-plane wrinkle on the B-scan ultrasound image. The method further includes determining an amplitude of the out-of-plane wrinkle based on a distance between the first marker and the second marker.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: March 31, 2020
    Assignee: The Boeing Company
    Inventors: Navpreet S. Grewal, Gary E. Georgeson, Jill P. Bingham, John D. Morris, Sabyasachi Basu
  • Publication number: 20190277808
    Abstract: Methods for measuring out-of-plane wrinkles in composite laminates are described. An example method includes scanning a first side of a composite laminate with an ultrasonic transducer. The method further includes locating an out-of-plane wrinkle of the composite laminate on a B-scan ultrasound image generated in response to the scanning of the first side of the composite laminate. The method further includes associating a first marker with the B-scan ultrasound image, the first marker determined based on a location of a crest of the out-of-plane wrinkle on the B-scan ultrasound image. The method further includes associating a second marker with the B-scan ultrasound image, the second marker determined based on a location of a trough focal point of the out-of-plane wrinkle on the B-scan ultrasound image. The method further includes determining an amplitude of the out-of-plane wrinkle based on a distance between the first marker and the second marker.
    Type: Application
    Filed: March 9, 2018
    Publication date: September 12, 2019
    Inventors: Navpreet S. Grewal, Gary E. Georgeson, Jill P. Bingham, John D. Morris, Sabyasachi Basu
  • Patent number: 10247706
    Abstract: System and method for enabling ultrasonic inspection of a variable and irregular shape. The system comprises one or more ultrasonic pulser/receivers, one or more ultrasonic transducer arrays, a shoe or jig to hold and position the array(s), data acquisition software to drive the array(s), and data analysis software to select a respective best return signal for each pixel to be displayed. This system starts with information about the general orientation of the array relative to the part and a general predicted part shape. More specific orientation of the transmitted ultrasound beams relative to the part surface is done electronically by phasing the elements in the array(s) to cover the expected (i.e., predicted) surface as well as the full range of part surface variability.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: April 2, 2019
    Assignee: The Boeing Company
    Inventors: Michael C. Hutchinson, James C. Kennedy, Barry A. Fetzer, Michael Joseph Duncan, Navpreet S. Grewal, Steven Ray Walton, Hien T. Bui
  • Patent number: 9804129
    Abstract: An apparatus for inspecting a tubular workpiece may include a probe assembly and a rotation mechanism. The probe assembly may include a transducer array positionable adjacent to an inner surface of the tubular workpiece. The probe assembly may generate transmitted sound waves and may receive reflected sound waves. The rotation mechanism may rotate the probe assembly relative to the tubular workpiece in a manner such that the transducer array passes over the inner surface in a circumferential direction during transmission of the transmitted sound waves.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: October 31, 2017
    Assignee: The Boeing Company
    Inventors: Barry A. Fetzer, Navpreet S. Grewal, Peter Kuk-kyung Hwang, William R. Schell, Kate Brown Boudreau
  • Patent number: 9500627
    Abstract: A system and a method for enabling ultrasonic inspection of multiple or varying radii of a composite part without making mechanical adjustments to compensate for changes in the radius dimension. The system may comprise one or more ultrasonic pulser/receivers, one or more ultrasonic transducer arrays, a probe body or shoe to hold and position the array(s), ultrasonic data acquisition application software to drive the array(s), and ultrasonic data acquisition application software to select the best signal response for each column of pixels to be displayed. The inspection methodology enables the examination of smooth curved fillets which change shape along the length of the part.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: November 22, 2016
    Assignee: The Boeing Company
    Inventors: Barry Allen Fetzer, James C. Kennedy, Navpreet S. Grewal
  • Publication number: 20160258905
    Abstract: System and method for enabling ultrasonic inspection of a variable and irregular shape. The system comprises one or more ultrasonic pulser/receivers, one or more ultrasonic transducer arrays, a shoe or jig to hold and position the array(s), data acquisition software to drive the array(s), and data analysis software to select a respective best return signal for each pixel to be displayed. This system starts with information about the general orientation of the array relative to the part and a general predicted part shape. More specific orientation of the transmitted ultrasound beams relative to the part surface is done electronically by phasing the elements in the array(s) to cover the expected (i.e., predicted) surface as well as the full range of part surface variability.
    Type: Application
    Filed: May 3, 2016
    Publication date: September 8, 2016
    Applicant: The Boeing Company
    Inventors: Michael C. Hutchinson, James C. Kennedy, Barry A. Fetzer, Michael Joseph Duncan, Navpreet S. Grewal, Steven Ray Walton, Hien T. Bui
  • Patent number: 9366655
    Abstract: System and method for enabling ultrasonic inspection of a variable and irregular shape. The system comprises one or more ultrasonic pulser/receivers, one or more ultrasonic transducer arrays, a shoe or jig to hold and position the array(s), data acquisition software to drive the array(s), and data analysis software to select a respective best return signal for each pixel to be displayed. This system starts with information about the general orientation of the array relative to the part and a general predicted part shape. More specific orientation of the transmitted ultrasound beams relative to the part surface is done electronically by phasing the elements in the array(s) to cover the expected (i.e., predicted) surface as well as the full range of part surface variability.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: June 14, 2016
    Assignee: The Boeing Company
    Inventors: Michael C. Hutchinson, James C. Kennedy, Barry A. Fetzer, Michael Joseph Duncan, Navpreet S. Grewal, Steven Ray Walton, Hien T. Bui
  • Publication number: 20150053014
    Abstract: An apparatus for inspecting a tubular workpiece may include a probe assembly and a rotation mechanism. The probe assembly may include a transducer array positionable adjacent to an inner surface of the tubular workpiece. The probe assembly may generate transmitted sound waves and may receive reflected sound waves. The rotation mechanism may rotate the probe assembly relative to the tubular workpiece in a manner such that the transducer array passes over the inner surface in a circumferential direction during transmission of the transmitted sound waves.
    Type: Application
    Filed: October 30, 2014
    Publication date: February 26, 2015
    Inventors: Barry A. Fetzer, Navpreet S. Grewal, Peter Kuk-kyung Hwang, William R. Schell, Kate Brown Boudreau
  • Patent number: 8899113
    Abstract: An apparatus for inspecting a tubular workpiece may include a probe assembly and a rotation mechanism. The probe assembly may include a transducer array positionable adjacent to an inner surface of the tubular workpiece. The probe assembly may generate transmitted sound waves and may receive reflected sound waves. The rotation mechanism may rotate the probe assembly relative to the tubular workpiece in a manner such that the transducer array passes over the inner surface in a circumferential direction during transmission of the transmitted sound waves.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: December 2, 2014
    Assignee: The Boeing Company
    Inventors: Barry A. Fetzer, Navpreet S. Grewal, Peter Kuk-kyung Hwang, William R. Schell, Kate Brown Boudreau
  • Publication number: 20140095085
    Abstract: A system and a method for enabling ultrasonic inspection of multiple or varying radii of a composite part without making mechanical adjustments to compensate for changes in the radius dimension. The system may comprise one or more ultrasonic pulser/receivers, one or more ultrasonic transducer arrays, a probe body or shoe to hold and position the array(s), ultrasonic data acquisition application software to drive the array(s), and ultrasonic data acquisition application software to select the best signal response for each column of pixels to be displayed. The inspection methodology enables the examination of smooth curved fillets which change shape along the length of the part.
    Type: Application
    Filed: December 9, 2013
    Publication date: April 3, 2014
    Applicant: THE BOEING COMPANY
    Inventors: Barry Allen Fetzer, James C. Kennedy, Navpreet S. Grewal
  • Publication number: 20130340531
    Abstract: System and method for enabling ultrasonic inspection of a variable and irregular shape. The system comprises one or more ultrasonic pulser/receivers, one or more ultrasonic transducer arrays, a shoe or jig to hold and position the array(s), data acquisition software to drive the array(s), and data analysis software to select a respective best return signal for each pixel to be displayed. This system starts with information about the general orientation of the array relative to the part and a general predicted part shape. More specific orientation of the transmitted ultrasound beams relative to the part surface is done electronically by phasing the elements in the array(s) to cover the expected (i.e., predicted) surface as well as the full range of part surface variability.
    Type: Application
    Filed: June 26, 2012
    Publication date: December 26, 2013
    Applicant: THE BOEING COMPANY
    Inventors: Michael C. Hutchinson, James C. Kennedy, Barry A. Fetzer, Michael Joseph Duncan, Navpreet S. Grewal, Steven Ray Walton, Hien T. Bui
  • Publication number: 20130319120
    Abstract: An apparatus for inspecting a tubular workpiece may include a probe assembly and a rotation mechanism. The probe assembly may include a transducer array positionable adjacent to an inner surface of the tubular workpiece. The probe assembly may generate transmitted sound waves and may receive reflected sound waves. The rotation mechanism may rotate the probe assembly relative to the tubular workpiece in a manner such that the transducer array passes over the inner surface in a circumferential direction during transmission of the transmitted sound waves.
    Type: Application
    Filed: May 29, 2012
    Publication date: December 5, 2013
    Applicant: THE BOEING COMPANY
    Inventors: Barry A. Fetzer, Navpreet S. Grewal, Peter Kuk-kyung Hwang, William R. Schell, Kate Brown Boudreau