Patents by Inventor Neal J. Carron

Neal J. Carron has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220167869
    Abstract: Systems and methods described herein use near field communications to locate a radiating transponder, such as a pill swallowed by a patient. The system can be triggered to turn on and transmit a waveform to a set of antennas attached to, coupled with, or near the patient. The magnetic field emitted by the transponder can be measured by the receiving antennas, for example, using principles of mutual inductance. The differential phase and/or time shifts between the antennas can contain sufficient information to find the location of the transponder and optionally its orientation relative to body coordinates. The system can display the location and/or orientation of the transponder. Further, the pill can include a reservoir to deliver a payload at a particular site of the patient's body based at least in part on the determined location.
    Type: Application
    Filed: July 9, 2021
    Publication date: June 2, 2022
    Inventors: Thomas Eugene Old, John Christopher Baker, Neal J. Carron, Donald Gordon Pritchett
  • Patent number: 11058322
    Abstract: Systems and methods described herein use near field communications to locate a radiating transponder, such as a pill swallowed by a patient. The system can be triggered to turn on and transmit a waveform to a set of antennas attached to, coupled with, or near the patient. The magnetic field emitted by the transponder can be measured by the receiving antennas, for example, using principles of mutual inductance. The differential phase and/or time shifts between the antennas can contain sufficient information to find the location of the transponder and optionally its orientation relative to body coordinates. The system can display the location and/or orientation of the transponder. Further, the pill can include a reservoir to deliver a payload at a particular site of the patient's body based at least in part on the determined location.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: July 13, 2021
    Assignee: Rock West Medical Devices, LLC
    Inventors: Thomas Eugene Old, John Christopher Baker, Neal J. Carron, Donald Gordon Pritchett
  • Publication number: 20190117115
    Abstract: Systems and methods described herein use near field communications to locate a radiating transponder, such as a pill swallowed by a patient. The system can be triggered to turn on and transmit a waveform to a set of antennas attached to, coupled with, or near the patient. The magnetic field emitted by the transponder can be measured by the receiving antennas, for example, using principles of mutual inductance. The differential phase and/or time shifts between the antennas can contain sufficient information to find the location of the transponder and optionally its orientation relative to body coordinates. The system can display the location and/or orientation of the transponder. Further, the pill can include a reservoir to deliver a payload at a particular site of the patient's body based at least in part on the determined location.
    Type: Application
    Filed: July 27, 2018
    Publication date: April 25, 2019
    Inventors: Thomas Eugene Old, John Christopher Baker, Neal J. Carron, Donald Gordon Pritchett
  • Patent number: 9131842
    Abstract: Systems and methods described herein use near field communications to locate a set of antennas attached to, coupled with, or near the patient. A signal emitted by an antenna in the set of antennas can be received by the other antennas in the set. A second signal can be further transmitted from another antenna in the set. The differential phase and/or time shifts between the antennas from the multiple signal transmissions can contain sufficient information to find the locations of the antennas in antenna centric coordinates. The antenna locations can then be used to find a location of a pill transmitter swallowed by the patient.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: September 15, 2015
    Assignee: Rock West Solutions, Inc.
    Inventors: Thomas Eugene Old, John Christopher Baker, Neal J. Carron, Donald Gordon Pritchett
  • Patent number: 8900142
    Abstract: Systems and methods described herein use near field communications to locate a radiating transponder, such as a pill swallowed by a patient. The system can be triggered to turn on and transmit an amplitude shift keyed waveform (or other type of waveform) to a set of antennas attached to, coupled with, or near the patient at roughly known locations. The magnetic field emitted by the transponder can be measured by the receiving antennas, for example, using principles of mutual inductance. The differential phase and/or time shifts between the antennas can contain sufficient information to find the location of the transponder and optionally its orientation relative to body coordinates. The system can display the location and/or orientation of the transponder and may optionally provide other information about the movement, flow, or other characteristics of pill to assist clinicians with diagnosis.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: December 2, 2014
    Assignee: Rock West Solutions, Inc.
    Inventors: Thomas Eugene Old, John Christopher Baker, Neal J. Carron, Donald Gordon Pritchett
  • Publication number: 20140058221
    Abstract: Systems and methods described herein use near field communications to locate a radiating transponder, such as a pill swallowed by a patient. The system can be triggered to turn on and transmit an amplitude shift keyed waveform (or other type of waveform) to a set of antennas attached to, coupled with, or near the patient at roughly known locations. The magnetic field emitted by the transponder can be measured by the receiving antennas, for example, using principles of mutual inductance. The differential phase and/or time shifts between the antennas can contain sufficient information to find the location of the transponder and optionally its orientation relative to body coordinates. The system can display the location and/or orientation of the transponder and may optionally provide other information about the movement, flow, or other characteristics of pill to assist clinicians with diagnosis.
    Type: Application
    Filed: August 16, 2013
    Publication date: February 27, 2014
    Applicant: Rock West Solutions, Inc.
    Inventors: Thomas Eugene Old, John Christopher Baker, Neal J. Carron, Donald Gordon Pritchett
  • Publication number: 20140051949
    Abstract: Systems and methods described herein use near field communications to locate a set of antennas attached to, coupled with, or near the patient. A signal emitted by an antenna in the set of antennas can be received by the other antennas in the set. A second signal can be further transmitted from another antenna in the set. The differential phase and/or time shifts between the antennas from the multiple signal transmissions can contain sufficient information to find the locations of the antennas in antenna centric coordinates. The antenna locations can then be used to find a location of a pill transmitter swallowed by the patient.
    Type: Application
    Filed: August 16, 2013
    Publication date: February 20, 2014
    Applicant: Rock West Solutions, Inc.
    Inventors: Thomas Eugene Old, John Christopher Baker, Neal J. Carron, Donald Gordon Pritchett
  • Patent number: 5399863
    Abstract: A detector for thermal neutrons comprising a stack of alternatingly arranged boron slabs and CCD arrays. The CCD arrays are receptive to energetic particles generated in the boron slabs by a thermal neutron, which energetic particles escape the boron slab in which they are generated and are captured by the next-adjacent CCD array, the CCD array being provided with circuit and power means to operate it and to read out the charges developed in the CCD arrays. The boron slabs are sufficiently thin that the energetic charged particles can escape, and the CCD arrays are sufficiently thick that the energetic particles will be trapped by them, and a charge will be developed therein which will be detected and measured.
    Type: Grant
    Filed: October 19, 1993
    Date of Patent: March 21, 1995
    Assignee: Mission Research Corporation
    Inventors: Neal J. Carron, Rudolf Goldflam