Patents by Inventor Neng-Kuo Chen

Neng-Kuo Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10879235
    Abstract: Systems and methods are provided for fabricating a semiconductor device structure. An example semiconductor device structure includes a first device layer, a second device layer and an inter-level connection structure. The first device layer includes a first conductive layer and a first dielectric layer formed on the first conductive layer, the first device layer being formed on a substrate. The second device layer includes a second conductive layer, the second device layer being formed on the first device layer. The inter-level connection structure includes one or more conductive materials and configured to electrically connect to the first conductive layer and the second conductive layer, the inter-level connection structure penetrating at least part of the first dielectric layer. The first conductive layer is configured to electrically connect to a first electrode structure of a first semiconductor device within the first device layer.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: December 29, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Tang Lin, Clement Hsingjen Wann, Neng-Kuo Chen
  • Patent number: 10797156
    Abstract: A method includes depositing a contact etch stop layer (CESL) over a gate, a source/drain (S/D) region and an isolation feature. The method includes performing a first chemical mechanical planarization (CMP) to expose the gate. The method further includes performing a second CMP using a slurry different from the first CMP to expose the CESL over the S/D region, wherein, following the second CMP, an entire top surface of the CESL over the S/D region and over the isolation feature is substantially level with a top surface of the gate.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: October 6, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Neng-Kuo Chen, Clement Hsingjen Wann, Yi-An Lin, Chun-Wei Chang, Sey-Ping Sun
  • Publication number: 20200258784
    Abstract: A fin structure is on a substrate. The fin structure includes an epitaxial region having an upper surface and an under-surface. A contact structure on the epitaxial region includes an upper contact portion and a lower contact portion. The upper contact portion includes a metal layer over the upper surface and a barrier layer over the metal layer. The lower contact portion includes a metal-insulator-semiconductor (MIS) contact along the under-surface. The MIS contact includes a dielectric layer on the under-surface and the barrier layer on the dielectric layer.
    Type: Application
    Filed: May 1, 2020
    Publication date: August 13, 2020
    Inventors: Sung-Li Wang, Neng-Kuo Chen, Ding-Kang Shih, Meng-Chun Chang, Yi-An Lin, Gin-Chen Huang, Chen-Feng Hsu, Hau-Yu Lin, Chih-Hsin Ko, Sey-Ping Sun, Clement Hsingjen Wann
  • Patent number: 10651091
    Abstract: A fin structure is on a substrate. The fin structure includes an epitaxial region having an upper surface and an under-surface. A contact structure on the epitaxial region includes an upper contact portion and a lower contact portion. The upper contact portion includes a metal layer over the upper surface and a barrier layer over the metal layer. The lower contact portion includes a metal-insulator-semiconductor (MIS) contact along the under-surface. The MIS contact includes a dielectric layer on the under-surface and the barrier layer on the dielectric layer.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: May 12, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sung-Li Wang, Neng-Kuo Chen, Ding-Kang Shih, Meng-Chun Chang, Yi-An Lin, Gin-Chen Huang, Chen-Feng Hsu, Hau-Yu Lin, Chih-Hsin Ko, Sey-Ping Sun, Clement Hsingjen Wann
  • Publication number: 20200127118
    Abstract: A method includes depositing a contact etch stop layer (CESL) over a gate, a source/drain (S/D) region and an isolation feature. The method includes performing a first chemical mechanical planarization (CMP) to expose the gate. The method further includes performing a second CMP using a slurry different from the first CMP to expose the CESL over the S/D region, wherein, following the second CMP, an entire top surface of the CESL over the S/D region and over the isolation feature is substantially level with a top surface of the gate.
    Type: Application
    Filed: December 23, 2019
    Publication date: April 23, 2020
    Inventors: Neng-Kuo CHEN, Clement Hsingjen WANN, Yi-An LIN, Chun-Wei CHANG, Sey-Ping SUN
  • Patent number: 10516031
    Abstract: A method of fabricating a semiconductor device includes depositing a contact etch stop layer (CESL) over a dummy gate electrode, a source/drain (S/D) region and an isolation feature. The method further includes performing a first CMP to expose the dummy gate electrode. The method further includes removing an upper portion of the CESL. The method further includes performing a second CMP using a slurry different from the first CMP to expose the CESL over the S/D region, wherein, following the second CMP, an entire top surface of the CESL over the S/D region and over the isolation feature is substantially level with a top surface of the dummy gate electrode.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: December 24, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Neng-Kuo Chen, Clement Hsingjen Wann, Yi-An Lin, Chun-Wei Chang, Sey-Ping Sun
  • Publication number: 20190252261
    Abstract: A fin structure is on a substrate. The fin structure includes an epitaxial region having an upper surface and an under-surface. A contact structure on the epitaxial region includes an upper contact portion and a lower contact portion. The upper contact portion includes a metal layer over the upper surface and a barrier layer over the metal layer. The lower contact portion includes a metal-insulator-semiconductor (MIS) contact along the under-surface. The MIS contact includes a dielectric layer on the under-surface and the barrier layer on the dielectric layer.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 15, 2019
    Inventors: Sung-Li Wang, Neng-Kuo Chen, Ding-Kang Shih, Meng-Chun Chang, Yi-An Lin, Gin-Chen Huang, Chen-Feng Hsu, Hau-Yu Lin, Chih-Hsin Ko, Sey-Ping Sun, Clement Hsingjen Wann
  • Patent number: 10269649
    Abstract: A fin structure is on a substrate. The fin structure includes an epitaxial region having an upper surface and an under-surface. A contact structure on the epitaxial region includes an upper contact portion and a lower contact portion. The upper contact portion includes a metal layer over the upper surface and a barrier layer over the metal layer. The lower contact portion includes a metal-insulator-semiconductor (MIS) contact along the under-surface. The MIS contact includes a dielectric layer on the under-surface and the barrier layer on the dielectric layer.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sung-Li Wang, Neng-Kuo Chen, Ding-Kang Shih, Meng-Chun Chang, Yi-An Lin, Gin-Chen Huang, Chen-Feng Hsu, Hau-Yu Lin, Chih-Hsin Ko, Sey-Ping Sun, Clement Hsingjen Wann
  • Publication number: 20190115341
    Abstract: Systems and methods are provided for fabricating a semiconductor device structure. An example semiconductor device structure includes a first device layer, a second device layer and an inter-level connection structure. The first device layer includes a first conductive layer and a first dielectric layer formed on the first conductive layer, the first device layer being formed on a substrate. The second device layer includes a second conductive layer, the second device layer being formed on the first device layer. The inter-level connection structure includes one or more conductive materials and configured to electrically connect to the first conductive layer and the second conductive layer, the inter-level connection structure penetrating at least part of the first dielectric layer. The first conductive layer is configured to electrically connect to a first electrode structure of a first semiconductor device within the first device layer.
    Type: Application
    Filed: December 21, 2018
    Publication date: April 18, 2019
    Inventors: Yi-Tang LIN, Clement Hsingjen WANN, Neng-Kuo CHEN
  • Patent number: 10163897
    Abstract: Systems and methods are provided for fabricating a semiconductor device structure. An example semiconductor device structure includes a first device layer, a second device layer and an inter-level connection structure. The first device layer includes a first conductive layer and a first dielectric layer formed on the first conductive layer, the first device layer being formed on a substrate. The second device layer includes a second conductive layer, the second device layer being formed on the first device layer. The inter-level connection structure includes one or more conductive materials and configured to electrically connect to the first conductive layer and the second conductive layer, the inter-level connection structure penetrating at least part of the first dielectric layer. The first conductive layer is configured to electrically connect to a first electrode structure of a first semiconductor device within the first device layer.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Tang Lin, Clement Hsingjen Wann, Neng-Kuo Chen
  • Patent number: 10115597
    Abstract: A device having an epitaxial region and dual metal-semiconductor alloy surfaces is provided. The epitaxial region includes an upward facing facet and a downward facing facet. The upward facing facet has a first metal-semiconductor alloy surface and the downward facing facet has a second metal-semiconductor alloy surface, wherein the first metal-semiconductor alloy is different than the second metal-semiconductor alloy.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: October 30, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Chi-Yuan Shih, Gin-Chen Huang, Clement Hsingjen Wann, Li-Chi Yu, Chin-Hsiang Lin, Ling-Yen Yeh, Meng-Chun Chang, Neng-Kuo Chen, Sey-Ping Sun, Ta-Chun Ma, Yen-Chun Huang
  • Publication number: 20180291234
    Abstract: A CMP slurry composition which provides for a high Ge- or SiGe-to-dielectric material selectivity a low rate of Ge or SiGe recess formation includes an oxidant and a germanium removal rate enhancer including at least one of a methylpyridine compound and a methylpyridine derivative compound. In some examples, the slurry composition also includes an etching inhibitor. In some cases, the slurry composition may include an abrasive, a surfactant, an organic complexant, a chelating agent, an organic or inorganic acid, an organic or inorganic base, a corrosion inhibitor, or a buffer. The slurry composition may be distributed onto a surface of a polishing pad disposed on a platen that is configured to rotate. Additionally, a workpiece carrier configured to house a substrate may bring the substrate into contact with the rotating polishing pad and thereby polish the substrate utilizing the slurry composition.
    Type: Application
    Filed: June 11, 2018
    Publication date: October 11, 2018
    Inventors: Chia-Jung HSU, Yun-Lung HO, Neng-Kuo CHEN, Song-Yuan CHANG, Teng-Chun TSAI
  • Publication number: 20180219095
    Abstract: A fin structure disposed over a substrate and a method of forming a fin structure are disclosed. The fin structure includes a mesa, a channel disposed over the mesa, and a convex-shaped feature disposed between the channel and the mesa. The mesa has a first semiconductor material, and the channel has a second semiconductor material different from the first semiconductor material. The convex-shaped feature is stepped-shaped, stair-shaped, or ladder-shaped. The convex-shaped feature includes a first isolation feature disposed between the channel and the mesa, and a second isolation feature disposed between the channel and the first isolation feature. The first isolation feature is U-shaped, and the second isolation feature is rectangular-shaped. A portion of the second isolation feature is surrounded by the channel and another portion of the second isolation feature is surrounded by the first isolation feature.
    Type: Application
    Filed: March 26, 2018
    Publication date: August 2, 2018
    Inventors: Gin-Chen Huang, Ching-Hong Jiang, Neng-Kuo Chen, Sey-Ping Sun, Clement Hsingjen Wann
  • Publication number: 20180219077
    Abstract: A fin structure is on a substrate. The fin structure includes an epitaxial region having an upper surface and an under-surface. A contact structure on the epitaxial region includes an upper contact portion and a lower contact portion. The upper contact portion includes a metal layer over the upper surface and a barrier layer over the metal layer. The lower contact portion includes a metal-insulator-semiconductor (MIS) contact along the under-surface. The MIS contact includes a dielectric layer on the under-surface and the barrier layer on the dielectric layer.
    Type: Application
    Filed: March 28, 2018
    Publication date: August 2, 2018
    Inventors: Sung-Li Wang, Neng-Kuo Chen, Ding-Kang Shih, Meng-Chun Chang, Yi-An Lin, Gin-Chen Huang, Chen-Feng Hsu, Hau-Yu Lin, Chih-Hsin Ko, Sey-Ping Sun, Clement Hsingjen Wann
  • Patent number: 9994736
    Abstract: A CMP slurry composition which provides for a high Ge- or SiGe-to-dielectric material selectivity a low rate of Ge or SiGe recess formation includes an oxidant and a germanium removal rate enhancer including at least one of a methylpyridine compound and a methylpyridine derivative compound. In some examples, the slurry composition also includes an etching inhibitor. In some cases, the slurry composition may include an abrasive, a surfactant, an organic complexant, a chelating agent, an organic or inorganic acid, an organic or inorganic base, a corrosion inhibitor, or a buffer. The slurry composition may be distributed onto a surface of a polishing pad disposed on a platen that is configured to rotate. Additionally, a workpiece carrier configured to house a substrate may bring the substrate into contact with the rotating polishing pad and thereby polish the substrate utilizing the slurry composition.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: June 12, 2018
    Assignees: Taiwan Semiconductor Manufacturing Company, Ltd., UWIZ Technology Co., Ltd.
    Inventors: Chia-Jung Hsu, Yun-Lung Ho, Neng-Kuo Chen, Song-Yuan Chang, Teng-Chun Tsai
  • Patent number: 9953878
    Abstract: A method of forming a semiconductor device is provided. The method includes forming a recess in a substrate and forming a first dielectric layer in the recess. A portion of the first dielectric layer is removed. A second dielectric layer is formed over the first dielectric layer. A gate structure is formed over the second dielectric layer.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: April 24, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Yu-Lien Huang, Tung Ying Lee, Pei-Yi Lin, Chun-Hsiang Fan, Sheng-Wen Yu, Neng-Kuo Chen, Ming-Huan Tsai
  • Patent number: 9941367
    Abstract: A fin structure is on a substrate. The fin structure includes an epitaxial region having an upper surface and an under-surface. A contact structure on the epitaxial region includes an upper contact portion and a lower contact portion. The upper contact portion includes a metal layer over the upper surface and a barrier layer over the metal layer. The lower contact portion includes a metal-insulator-semiconductor (MIS) contact along the under-surface. The MIS contact includes a dielectric layer on the under-surface and the barrier layer on the dielectric layer.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: April 10, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sung-Li Wang, Neng-Kuo Chen, Ding-Kang Shih, Meng-Chun Chang, Yi-An Lin, Gin-Chen Huang, Chen-Feng Hsu, Hau-Yu Lin, Chih-Hsin Ko, Sey-Ping Sun, Clement Hsingjen Wann
  • Patent number: 9929272
    Abstract: A fin structure disposed over a substrate and a method of forming a fin structure are disclosed. The fin structure includes a mesa, a channel disposed over the mesa, and a convex-shaped feature disposed between the channel and the mesa. The mesa has a first semiconductor material, and the channel has a second semiconductor material different from the first semiconductor material. The convex-shaped feature is stepped-shaped, stair-shaped, or ladder-shaped. The convex-shaped feature includes a first isolation feature disposed between the channel and the mesa, and a second isolation feature disposed between the channel and the first isolation feature. The first isolation feature is U-shaped, and the second isolation feature is rectangular-shaped. A portion of the second isolation feature is surrounded by the channel and another portion of the second isolation feature is surrounded by the first isolation feature.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: March 27, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Gin-Chen Huang, Ching-Hong Jiang, Neng-Kuo Chen, Sey-Ping Sun, Clement Hsingjen Wann
  • Publication number: 20180069094
    Abstract: A method of fabricating a semiconductor device includes depositing a contact etch stop layer (CESL) over a dummy gate electrode, a source/drain (S/D) region and an isolation feature. The method further includes performing a first CMP to expose the dummy gate electrode. The method further includes removing an upper portion of the CESL. The method further includes performing a second CMP using a slurry different from the first CMP to expose the CESL over the S/D region, wherein, following the second CMP, an entire top surface of the CESL over the S/D region and over the isolation feature is substantially level with a top surface of the dummy gate electrode.
    Type: Application
    Filed: October 31, 2017
    Publication date: March 8, 2018
    Inventors: Neng-Kuo CHEN, Clement Hsingjen WANN, Yi-An LIN, Chun-Wei CHANG, Sey-Ping SUN
  • Patent number: 9899496
    Abstract: The present disclosure provides a device having a doped active region disposed in a substrate. The doped active region having an elongate shape and extends in a first direction. The device also includes a plurality of first metal gates disposed over the active region such that the first metal gates each extend in a second direction different from the first direction. The plurality of first metal gates includes an outer-most first metal gate having a greater dimension measured in the second direction than the rest of the first metal gates. The device further includes a plurality of second metal gates disposed over the substrate but not over the doped active region. The second metal gates contain different materials than the first metal gates. The second metal gates each extend in the second direction and form a plurality of respective N/P boundaries with the first metal gates.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: February 20, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Sey-Ping Sun, Sung-Li Wang, Chin-Hsiang Lin, Neng-Kuo Chen, Clement Hsingjen Wann