Patents by Inventor Niall Fox

Niall Fox has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11850077
    Abstract: Disclosed is a cardio-pulmonary health monitoring apparatus. The apparatus comprises a contactless motion sensor configured to generate one or more movement signals representing bodily movement of a patient during a monitoring session; a processor; and a memory storing program instructions configured to cause the processor to carry out a method of processing the one or more movement signals. The method comprises extracting one or more sleep disordered breathing features from the one or more movement signals, and predicting whether a clinical event is likely to occur during a predetermined prediction horizon based on the one or more sleep disordered breathing features.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: December 26, 2023
    Inventors: Klaus Henry Schindhelm, Steven Paul Farrugia, Michael Waclaw Colefax, Faizan Javed, Rami Khushaba, Conor Heneghan, Philip De Chazal, Alberto Zaffaroni, Niall Fox, Patrick Celka, Emer O'Hare, Stephen James Redmond
  • Publication number: 20230293021
    Abstract: An apparatus, system, and method monitors the motion, breathing, heart rate and sleep state of subjects, e.g., humans, in a convenient, non-invasive/non-contact, and low-cost fashion. More particularly, the motion, breathing, and heart rate signals are obtained through processing applied to a raw signal obtained in a non-contact fashion, typically using a radio-frequency sensor. Periods of sleep disturbed respiration, or central apnea can be detected through analysis of the respiratory signal. The mean heart rate, and derived information, such as the presence of cardiac arrhythmias can be determined from the cardiac signal. Motion estimates can be used to recognize disturbed sleep and periodic limb movements. The sleep state may be determined by applying a classifier model to the resulting streams of respiratory, cardiac and motion data. A means for display of the sleep state, respiratory, cardiac, and movement status may also be provided.
    Type: Application
    Filed: May 23, 2023
    Publication date: September 21, 2023
    Applicant: ResMed Sensor Technologies Limited
    Inventors: Conor HENEGHAN, Conor Hanley, Niall Fox, Philip De Chazal
  • Patent number: 11690519
    Abstract: An apparatus, system, and method monitors the motion, breathing, heart rate and sleep state of subjects, e.g., humans, in a convenient, non-invasive/non-contact, and low-cost fashion. More particularly, the motion, breathing, and heart rate signals are obtained through processing applied to a raw signal obtained in a non-contact fashion, typically using a radio-frequency sensor. Periods of sleep disturbed respiration, or central apnea can be detected through analysis of the respiratory signal. The mean heart rate, and derived information, such as the presence of cardiac arrhythmias can be determined from the cardiac signal. Motion estimates can be used to recognize disturbed sleep and periodic limb movements. The sleep state may be determined by applying a classifier model to the resulting streams of respiratory, cardiac and motion data. A means for display of the sleep state, respiratory, cardiac, and movement status may also be provided.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: July 4, 2023
    Inventors: Conor Heneghan, Conor Hanley, Niall Fox, Philip De Chazal
  • Publication number: 20230099622
    Abstract: Devices, systems, and methods are disclosed. The devices, systems, and methods detect one or more parameters with respect to movement of a user, cardiac activity of the user, audio associated with the user, or a combination thereof during a sleep session of the user; process the one or more parameters to determine a sleep status of the user, the sleep status being at least one of awake, asleep, or a sleep stage; and calculate an apnea-hypopnea index for the user during the sleep session based, at least in part, on the sleep status.
    Type: Application
    Filed: January 31, 2021
    Publication date: March 30, 2023
    Inventors: Niall Fox, Anna Rice, Stephen McMahon, Graeme Lyon, Redmond Shouldice, Stephen Dodd
  • Publication number: 20220339383
    Abstract: Method and apparatus obtain information about a patient and/or a respiratory therapy system that is configured to deliver respiratory therapy to the patient. The respiratory therapy system may include a flow generator configured to generate a supply of pressurized air along an air circuit to a patient interface. A sound signal representing a sound in the air circuit may be processed to obtain cepstrum data. A time series of delay estimates based on acoustic signatures of the cepstrum data may be generated. Each acoustic signature may represent a reflection of sound from a patient interface along the air circuit. Variation in the time series of delay estimates may be analysed. One or more output indicators based on the variation may be generated. The one or more output indicators may concern patient and/or system status.
    Type: Application
    Filed: September 30, 2020
    Publication date: October 27, 2022
    Applicants: ResMed Pty Ltd, ResMed Sensor Technologies Limited
    Inventors: Liam HOLLEY, Redmond SHOULDICE, Anna RICE, Niall FOX, Stephen MCMAHON, Graeme LYON
  • Publication number: 20210275056
    Abstract: Methods and devices provide physiological movement detection with active sound generation. In some versions, a processor may detect breathing and/or gross body motion. The processor may control producing, via a speaker coupled to the processor, a sound signal in a user's vicinity. The processor may control sensing, via a microphone coupled to the processor, a reflected sound signal. This reflected sound signal is a reflection of the sound signal from the user. The processor may process the reflected sound, such as by a demodulation technique. The processor may detect breathing from the processed reflected sound signal. The sound signal may be produced as a series of tone pairs in a frame of slots or as a phase-continuous repeated waveform having changing frequencies (e.g., triangular or ramp sawtooth). Evaluation of detected movement information may determine sleep states or scoring, fatigue indications, subject recognition, chronic disease monitoring/prediction, and other output parameters.
    Type: Application
    Filed: September 19, 2017
    Publication date: September 9, 2021
    Applicant: RESMED SENSOR TECHNOLOGIES LIMITED
    Inventors: Stephen MCMAHON, Damien O'ROURKE, Alberto ZAFFARONI, Redmond SHOULDICE, Tony FAGAN, Niall FOX, Niall O'MAHONY, Graeme LYON
  • Publication number: 20210193275
    Abstract: An apparatus, system, and method for the measurement, aggregation and analysis of data collected using non-contact or minimally-contacting sensors provides quality of life parameters for individual subjects, particularly in the context of a controlled trial of interventions on human subjects (e.g., a clinical trial of a drug, or an evaluation of a consumer item such as a fragrance). In particular, non-contact or minimal-contact measurement of quality-of-life parameters such as sleep, stress, relaxation, drowsiness, temperature and emotional state of humans may be evaluated, together with automated sampling, storage, and transmission to a remote data analysis center. One component of the system is that the objective data is measured with as little disruption as possible to the normal behavior of the subject. The system can also support behavioral and pharmaceutical interventions aimed at improving quality of life.
    Type: Application
    Filed: December 9, 2020
    Publication date: June 24, 2021
    Applicant: RESMED SENSOR TECHNOLOGIES LIMITED
    Inventors: Conor HENEGHAN, Conor Hanley, Niall Fox, Alberto Zaffaroni, Philip De Chazal
  • Publication number: 20210038087
    Abstract: An apparatus, system, and method monitors the motion, breathing, heart rate and sleep state of subjects, e.g., humans, in a convenient, non-invasive/non-contact, and low-cost fashion. More particularly, the motion, breathing, and heart rate signals are obtained through processing applied to a raw signal obtained in a non-contact fashion, typically using a radio-frequency sensor. Periods of sleep disturbed respiration, or central apnea can be detected through analysis of the respiratory signal. The mean heart rate, and derived information, such as the presence of cardiac arrhythmias can be determined from the cardiac signal. Motion estimates can be used to recognize disturbed sleep and periodic limb movements. The sleep state may be determined by applying a classifier model to the resulting streams of respiratory, cardiac and motion data. A means for display of the sleep state, respiratory, cardiac, and movement status may also be provided.
    Type: Application
    Filed: July 2, 2020
    Publication date: February 11, 2021
    Applicant: RESMED SENSOR TECHNOLOGIES LIMITED
    Inventors: Conor HENEGHAN, Conor Hanley, Niall Fox, Philip De Chazal
  • Patent number: 10891356
    Abstract: An apparatus, system, and method for the measurement, aggregation and analysis of data collected using non-contact or minimally-contacting sensors provides quality of life parameters for individual subjects, particularly in the context of a controlled trial of interventions on human subjects (e.g., a clinical trial of a drug, or an evaluation of a consumer item such as a fragrance). In particular, non-contact or minimal-contact measurement of quality-of-life parameters such as sleep, stress, relaxation, drowsiness, temperature and emotional state of humans may be evaluated, together with automated sampling, storage, and transmission to a remote data analysis center. One component of the system is that the objective data is measured with as little disruption as possible to the normal behavior of the subject. The system can also support behavioral and pharmaceutical interventions aimed at improving quality of life.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: January 12, 2021
    Inventors: Conor Heneghan, Conor Hanley, Niall Fox, Alberto Zaffaroni, Philip De Chazal
  • Patent number: 10885152
    Abstract: An apparatus, system, and method for the measurement, aggregation and analysis of data collected using non-contact or minimally-contacting sensors provides quality of life parameters for individual subjects, particularly in the context of a controlled trial of interventions on human subjects (e.g., a clinical trial of a drug, or an evaluation of a consumer item such as a fragrance). In particular, non-contact or minimal-contact measurement of quality-of-life parameters such as sleep, stress, relaxation, drowsiness, temperature and emotional state of humans may be evaluated, together with automated sampling, storage, and transmission to a remote data analysis center. One component of the system is that the objective data is measured with as little disruption as possible to the normal behavior of the subject. The system can also support behavioral and pharmaceutical interventions aimed at improving quality of life.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: January 5, 2021
    Assignee: RESMED SENSOR TECHNOLOGIES LIMITED
    Inventors: Conor Heneghan, Conor Hanley, Niall Fox, Alberto Zaffaroni, Philip De Chazal
  • Patent number: 10729332
    Abstract: An apparatus, system, and method monitors the motion, breathing, heart rate and sleep state of subjects, e.g., humans, in a convenient, non-invasive/non-contact, and low-cost fashion. More particularly, the motion, breathing, and heart rate signals are obtained through processing applied to a raw signal obtained in a non-contact fashion, typically using a radio-frequency sensor. Periods of sleep disturbed respiration, or central apnea can be detected through analysis of the respiratory signal. The mean heart rate, and derived information, such as the presence of cardiac arrhythmias can be determined from the cardiac signal. Motion estimates can be used to recognize disturbed sleep and periodic limb movements. The sleep state may be determined by applying a classifier model to the resulting streams of respiratory, cardiac and motion data. A means for display of the sleep state, respiratory, cardiac, and movement status may also be provided.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: August 4, 2020
    Assignee: ResMed Sensor Technologies Limited
    Inventors: Conor Heneghan, Conor Hanley, Niall Fox, Philip De Chazal
  • Publication number: 20200113484
    Abstract: Disclosed is a cardio-pulmonary health monitoring apparatus. The apparatus comprises a contactless motion sensor configured to generate one or more movement signals representing bodily movement of a patient during a monitoring session; a processor; and a memory storing program instructions configured to cause the processor to carry out a method of processing the one or more movement signals. The method comprises extracting one or more sleep disordered breathing features from the one or more movement signals, and predicting whether a clinical event is likely to occur during a predetermined prediction horizon based on the one or more sleep disordered breathing features.
    Type: Application
    Filed: August 21, 2019
    Publication date: April 16, 2020
    Applicant: RESMED SENSOR TECHNOLOGIES LIMITED
    Inventors: Klaus Henry SCHINDHELM, Steven Paul FARRUGIA, Michael Waclaw COLEFAX, Faizan JAVED, Rami KHUSHABA, Conor HENEGHAN, Philip DE CHAZAL, Alberto ZAFFARONI, Niall FOX, Patrick CELKA, Emer O'HARE, Stephen James REDMOND
  • Patent number: 10426380
    Abstract: Disclosed is a cardio-pulmonary health monitoring apparatus. The apparatus comprises a contactless motion sensor configured to generate one or more movement signals representing bodily movement of a patient during a monitoring session; a processor; and a memory storing program instructions configured to cause the processor to carry out a method of processing the one or more movement signals. The method comprises extracting one or more sleep disordered breathing features from the one or more movement signals, and predicting whether a clinical event is likely to occur during a predetermined prediction horizon based on the one or more sleep disordered breathing features.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: October 1, 2019
    Assignee: ResMed Sensor Technologies Limited
    Inventors: Klaus Henry Schindhelm, Steven Paul Farrugia, Michael Waclaw Colefax, Faizan Javed, Rami Khushaba, Conor Heneghan, Philip De Chazal, Alberto Zaffaroni, Niall Fox, Patrick Celka, Emer O'Hare, Stephen James Redmond
  • Publication number: 20190021607
    Abstract: An apparatus, system, and method monitors the motion, breathing, heart rate and sleep state of subjects, e.g., humans, in a convenient, non-invasive/non-contact, and low-cost fashion. More particularly, the motion, breathing, and heart rate signals are obtained through processing applied to a raw signal obtained in a non-contact fashion, typically using a radio-frequency sensor. Periods of sleep disturbed respiration, or central apnea can be detected through analysis of the respiratory signal. The mean heart rate, and derived information, such as the presence of cardiac arrhythmias can be determined from the cardiac signal. Motion estimates can be used to recognize disturbed sleep and periodic limb movements. The sleep state may be determined by applying a classifier model to the resulting streams of respiratory, cardiac and motion data. A means for display of the sleep state, respiratory, cardiac, and movement status may also be provided.
    Type: Application
    Filed: September 17, 2013
    Publication date: January 24, 2019
    Applicant: RESMED SENSOR TECHNOLOGIES LIMITED
    Inventors: Conor Heneghan, Conor Hanley, Niall Fox, Philip De Chazal
  • Publication number: 20160125160
    Abstract: An apparatus, system, and method for the measurement, aggregation and analysis of data collected using non-contact or minimally-contacting sensors provides quality of life parameters for individual subjects, particularly in the context of a controlled trial of interventions on human subjects (e.g., a clinical trial of a drug, or an evaluation of a consumer item such as a fragrance). In particular, non-contact or minimal-contact measurement of quality-of-life parameters such as sleep, stress, relaxation, drowsiness, temperature and emotional state of humans may be evaluated, together with automated sampling, storage, and transmission to a remote data analysis center. One component of the system is that the objective data is measured with as little disruption as possible to the normal behavior of the subject. The system can also support behavioral and pharmaceutical interventions aimed at improving quality of life.
    Type: Application
    Filed: November 20, 2015
    Publication date: May 5, 2016
    Inventors: Conor Heneghan, Conor Hanley, Niall Fox, Alberto Zaffaroni, Philip De Chazal
  • Patent number: 9223935
    Abstract: An apparatus, system, and method for the measurement, aggregation and analysis of data collected using non-contact or minimally-contacting sensors provides quality of life parameters for individual subjects, particularly in the context of a controlled trial of interventions on human subjects (e.g., a clinical trial of a drug, or an evaluation of a consumer item such as a fragrance). In particular, non-contact or minimal-contact measurement of quality-of-life parameters such as sleep, stress, relaxation, drowsiness, temperature and emotional state of humans may be evaluated, together with automated sampling, storage, and transmission to a remote data analysis center. One component of the system is that the objective data is measured with as little disruption as possible to the normal behavior of the subject. The system can also support behavioral and pharmaceutical interventions aimed at improving quality of life.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: December 29, 2015
    Assignee: ResMed Sensor Technologies Limited
    Inventors: Conor Heneghan, Conor Hanley, Niall Fox, Alberto Zaffaroni, Philip De Chazal
  • Publication number: 20150164375
    Abstract: Disclosed is a cardio-pulmonary health monitoring apparatus. The apparatus comprises a contactless motion sensor configured to generate one or more movement signals representing bodily movement of a patient during a monitoring session; a processor; and a memory storing program instructions configured to cause the processor to carry out a method of processing the one or more movement signals. The method comprises extracting one or more sleep disordered breathing features from the one or more movement signals, and predicting whether a clinical event is likely to occur during a predetermined prediction horizon based on the one or more sleep disordered breathing features.
    Type: Application
    Filed: May 30, 2013
    Publication date: June 18, 2015
    Applicants: ResMed Sensor Technologies Limited, ResMed Limited
    Inventors: Klaus Henry Schindhelm, Steven Paul Farrugia, Michael Waclaw Colefax, Faizan Javed, Rami Khushaba, Conor Heneghan, Philip De Chazal, Alberto Zaffaroni, Niall Fox, Patrick Celka, Emer O' Hare, Stephen James Redmond
  • Publication number: 20140163343
    Abstract: An apparatus, system, and method monitors the motion, breathing, heart rate and sleep state of subjects, e.g., humans, in a convenient, non-invasive/non-contact, and low-cost fashion. More particularly, the motion, breathing, and heart rate signals are obtained through processing applied to a raw signal obtained in a non-contact fashion, typically using a radio-frequency sensor. Periods of sleep disturbed respiration, or central apnea can be detected through analysis of the respiratory signal. The mean heart rate, and derived information, such as the presence of cardiac arrhythmias can be determined from the cardiac signal. Motion estimates can be used to recognize disturbed sleep and periodic limb movements. The sleep state may be determined by applying a classifier model to the resulting streams of respiratory, cardiac and motion data. A means for display of the sleep state, respiratory, cardiac, and movement status may also be provided.
    Type: Application
    Filed: September 17, 2013
    Publication date: June 12, 2014
    Applicant: RESMED SENSOR TECHNOLOGIES LIMITED
    Inventors: Conor Heneghan, Conor Hanley, Niall Fox, Philip De Chazal
  • Patent number: 8562526
    Abstract: An apparatus, system, and method monitors the motion, breathing, heart rate and sleep state of subjects, e.g., humans, in a convenient, non-invasive/non-contact, and low-cost fashion. More particularly, the motion, breathing, and heart rate signals are obtained through processing applied to a raw signal obtained in a non-contact fashion, typically using a radio-frequency sensor. Periods of sleep disturbed respiration, or central apnea can be detected through analysis of the respiratory signal. The mean heart rate, and derived information, such as the presence of cardiac arrhythmias can be determined from the cardiac signal. Motion estimates can be used to recognize disturbed sleep and periodic limb movements. The sleep state may be determined by applying a classifier model to the resulting streams of respiratory, cardiac and motion data. A means for display of the sleep state, respiratory, cardiac, and movement status may also be provided.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: October 22, 2013
    Assignee: ResMed Sensor Technologies Limited
    Inventors: Conor Heneghan, Conor Hanley, Niall Fox, Philip De Chazal
  • Publication number: 20110178377
    Abstract: An apparatus, system, and method for the measurement, aggregation and analysis of data collected using non-contact or minimally-contacting sensors provides quality of life parameters for individual subjects, particularly in the context of a controlled trial of interventions on human subjects (e.g., a clinical trial of a drug, or an evaluation of a consumer item such as a fragrance). In particular, non-contact or minimal-contact measurement of quality-of-life parameters such as sleep, stress, relaxation, drowsiness, temperature and emotional state of humans may be evaluated, together with automated sampling, storage, and transmission to a remote data analysis center. One component of the system is that the objective data is measured with as little disruption as possible to the normal behavior of the subject. The system can also support behavioral and pharmaceutical interventions aimed at improving quality of life.
    Type: Application
    Filed: September 23, 2009
    Publication date: July 21, 2011
    Applicant: BIANCAMED LTD.
    Inventors: Conor Heneghan, Conor Hanley, Niall Fox, Alberto Zaffaroni, Philip De Chazal